Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/34246
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorSafont, Gonzalo-
dc.contributor.authorSalazar, Addisson-
dc.contributor.authorRodríguez, Alberto-
dc.contributor.authorVergara, Luis-
dc.contributor.otherDepartamentos de la UMH::Ingeniería de Comunicacioneses_ES
dc.date.accessioned2025-01-09T13:37:46Z-
dc.date.available2025-01-09T13:37:46Z-
dc.date.created2020-07-04-
dc.identifier.citationIntelligent Computing, pp 554–563es_ES
dc.identifier.isbn978-3-030-52246-9-
dc.identifier.urihttps://hdl.handle.net/11000/34246-
dc.description.abstractRoad surface identification is attracting more attention in recent years as part of the development of autonomous vehicle technologies. Most works consider multiple sensors and many features in order to produce a more reliable and robust result. However, on-board limitations and generalization concerns dictate the need for dimensionality reduction methods. This work considers four dimensionality reduction methods: principal component analysis, sequential feature selection, ReliefF, and a novel feature ranking method. These methods are used on data obtained from a modified passenger car with four types of sensors. Results were obtained using three classifiers (linear discriminant analysis, support vector machines, and random forests) and a late fusion method based on alpha integration, reaching up to 96.10% accuracy. The considered dimensionality reduction methods were able to reduce the number of features required for classification greatly and increased classification performance. Furthermore, the proposed method was faster than ReliefF and sequential feature selection and yielded similar improvements.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent10es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsinfo:eu-repo/semantics/closedAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectClassificationes_ES
dc.subjectDecision fusiones_ES
dc.subjectFeature selectiones_ES
dc.subjectRoad surface identificationes_ES
dc.subjectSelf-driving vehicleses_ES
dc.subject.otherCDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnologíaes_ES
dc.titleComparison of Dimensionality Reduction Methods for Road Surface Identification Systemes_ES
dc.typeinfo:eu-repo/semantics/bookPartes_ES
dc.relation.publisherversionhttps://doi.org/10.1007/978-3-030-52246-9_40es_ES
Aparece en las colecciones:
Capítulo de libros Ingeniería de comunicaciones


no-thumbnailVer/Abrir:

 Comparison.pdf



346,21 kB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.