Please use this identifier to cite or link to this item:
https://hdl.handle.net/11000/34218
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Safont, Gonzalo | - |
dc.contributor.author | Salazar, Addisson | - |
dc.contributor.author | Vergara, Luis | - |
dc.contributor.author | Rodríguez, Alberto | - |
dc.contributor.other | Departamentos de la UMH::Ingeniería de Comunicaciones | es_ES |
dc.date.accessioned | 2025-01-08T09:47:18Z | - |
dc.date.available | 2025-01-08T09:47:18Z | - |
dc.date.created | 2018-10-05 | - |
dc.identifier.citation | Signal Processing, Volume 155, February 2019, Pages 281-286 | es_ES |
dc.identifier.issn | 1872-7557 | - |
dc.identifier.issn | 0165-1684 | - |
dc.identifier.uri | https://hdl.handle.net/11000/34218 | - |
dc.description.abstract | Independent Component Analyzers Mixture Models (ICAMM) are versatile and general models for a large variety of probability density functions. In this paper we assume ICAMM to derive new MAP and LMSE estimators. The first one (MAP-ICAMM) is obtained by an iterative gradient algorithm, while the second (LMSE-ICAMM) admits a closed-form solution. Both estimators can be combined by using LMSE-ICAMM to initialize the iterative computation of MAP-ICAMM .The new estimators are applied to the reconstruction of missed channels in EEG multichannel analysis. The experiments demonstrate the superiority of the new estimators with respect to: Spherical Splines, Hermite, Partial Least Squares, Support Vector Regression, and Random Forest Regression. | es_ES |
dc.format | application/pdf | es_ES |
dc.format.extent | 6 | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.rights | info:eu-repo/semantics/closedAccess | es_ES |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | ICA | es_ES |
dc.subject | Nonlinear estimators | es_ES |
dc.subject | LMSE | es_ES |
dc.subject | MAP | es_ES |
dc.subject | EEG reconstruction | es_ES |
dc.subject | non-Gaussian mixtures | es_ES |
dc.subject.other | CDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnología | es_ES |
dc.title | Nonlinear estimators from ICA mixture models | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.sigpro.2018.10.003 | es_ES |
View/Open:
1-s2.0-S0165168418303347-main.pdf
1,45 MB
Adobe PDF
Share: