Please use this identifier to cite or link to this item:
https://hdl.handle.net/11000/34216
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Salazar, Addisson | - |
dc.contributor.author | Rodríguez, Alberto | - |
dc.contributor.author | Vargas, Nancy | - |
dc.contributor.author | Vergara, Luis | - |
dc.contributor.other | Departamentos de la UMH::Ingeniería de Comunicaciones | es_ES |
dc.date.accessioned | 2025-01-08T09:45:37Z | - |
dc.date.available | 2025-01-08T09:45:37Z | - |
dc.date.created | 2022-03-28 | - |
dc.identifier.citation | Applied Sciences, 2022, 12, 3423 | es_ES |
dc.identifier.issn | 2076-3417 | - |
dc.identifier.uri | https://hdl.handle.net/11000/34216 | - |
dc.description.abstract | It is demonstrated that data augmentation is a promising approach to reduce the size of the captured dataset required for training automatic road surface classifiers. The context is on-board systems for autonomous or semi-autonomous driving assistance: automatic power-assisted steering. Evidence is obtained by extensive experiments involving multiple captures from a 10-channel multisensor deployment: three channels from the accelerometer (acceleration in the X, Y, and Z axes); three microphone channels; two speed channels; and the torque and position of the handwheel. These captures were made under different settings: three worm-gear interface configurations; hands on or off the wheel; vehicle speed (constant speed of 10, 15, 20, 30 km/h, or accelerating from 0 to 30 km/h); and road surface (smooth flat asphalt, stripes, or cobblestones). It has been demonstrated in the experiments that data augmentation allows a reduction by an approximate factor of 1.5 in the size of the captured training dataset. | es_ES |
dc.format | application/pdf | es_ES |
dc.format.extent | 11 | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | MDPI | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | driving assistance | es_ES |
dc.subject | road surface classification | es_ES |
dc.subject | machine learning | es_ES |
dc.subject | data augmentation | es_ES |
dc.subject.other | CDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnología | es_ES |
dc.title | On Training Road Surface Classifiers by Data Augmentation | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/app12073423 | es_ES |
View/Open:
applsci-12-03423.pdf
3,05 MB
Adobe PDF
Share: