Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/34216
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSalazar, Addisson-
dc.contributor.authorRodríguez, Alberto-
dc.contributor.authorVargas, Nancy-
dc.contributor.authorVergara, Luis-
dc.contributor.otherDepartamentos de la UMH::Ingeniería de Comunicacioneses_ES
dc.date.accessioned2025-01-08T09:45:37Z-
dc.date.available2025-01-08T09:45:37Z-
dc.date.created2022-03-28-
dc.identifier.citationApplied Sciences, 2022, 12, 3423es_ES
dc.identifier.issn2076-3417-
dc.identifier.urihttps://hdl.handle.net/11000/34216-
dc.description.abstractIt is demonstrated that data augmentation is a promising approach to reduce the size of the captured dataset required for training automatic road surface classifiers. The context is on-board systems for autonomous or semi-autonomous driving assistance: automatic power-assisted steering. Evidence is obtained by extensive experiments involving multiple captures from a 10-channel multisensor deployment: three channels from the accelerometer (acceleration in the X, Y, and Z axes); three microphone channels; two speed channels; and the torque and position of the handwheel. These captures were made under different settings: three worm-gear interface configurations; hands on or off the wheel; vehicle speed (constant speed of 10, 15, 20, 30 km/h, or accelerating from 0 to 30 km/h); and road surface (smooth flat asphalt, stripes, or cobblestones). It has been demonstrated in the experiments that data augmentation allows a reduction by an approximate factor of 1.5 in the size of the captured training dataset.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent11es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectdriving assistancees_ES
dc.subjectroad surface classificationes_ES
dc.subjectmachine learninges_ES
dc.subjectdata augmentationes_ES
dc.subject.otherCDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnologíaes_ES
dc.titleOn Training Road Surface Classifiers by Data Augmentationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.3390/app12073423es_ES
Appears in Collections:
Artículos Ingeniería Comunicaciones


Thumbnail

View/Open:
 applsci-12-03423.pdf

3,05 MB
Adobe PDF
Share:


Creative Commons ???jsp.display-item.text9???