Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/11000/34216
On Training Road Surface Classifiers by Data Augmentation
Título : On Training Road Surface Classifiers by Data Augmentation |
Autor : Salazar, Addisson Rodríguez, Alberto Vargas, Nancy Vergara, Luis |
Editor : MDPI |
Departamento: Departamentos de la UMH::Ingeniería de Comunicaciones |
Fecha de publicación: 2022-03-28 |
URI : https://hdl.handle.net/11000/34216 |
Resumen :
It is demonstrated that data augmentation is a promising approach to reduce the size of
the captured dataset required for training automatic road surface classifiers. The context is on-board
systems for autonomous or semi-autonomous driving assistance: automatic power-assisted steering.
Evidence is obtained by extensive experiments involving multiple captures from a 10-channel multisensor deployment: three channels from the accelerometer (acceleration in the X, Y, and Z axes); three
microphone channels; two speed channels; and the torque and position of the handwheel. These
captures were made under different settings: three worm-gear interface configurations; hands on or
off the wheel; vehicle speed (constant speed of 10, 15, 20, 30 km/h, or accelerating from 0 to 30 km/h);
and road surface (smooth flat asphalt, stripes, or cobblestones). It has been demonstrated in the
experiments that data augmentation allows a reduction by an approximate factor of 1.5 in the size of
the captured training dataset.
|
Palabras clave/Materias: driving assistance road surface classification machine learning data augmentation |
Área de conocimiento : CDU: Ciencias aplicadas: Ingeniería. Tecnología |
Tipo de documento : info:eu-repo/semantics/article |
Derechos de acceso: info:eu-repo/semantics/openAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
DOI : https://doi.org/10.3390/app12073423 |
Aparece en las colecciones: Artículos Ingeniería Comunicaciones
|
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.