Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/34216

On Training Road Surface Classifiers by Data Augmentation


Vista previa

Ver/Abrir:
 applsci-12-03423.pdf

3,05 MB
Adobe PDF
Compartir:
Título :
On Training Road Surface Classifiers by Data Augmentation
Autor :
Salazar, Addisson  
Rodríguez, Alberto
Vargas, Nancy
Vergara, Luis
Editor :
MDPI
Departamento:
Departamentos de la UMH::Ingeniería de Comunicaciones
Fecha de publicación:
2022-03-28
URI :
https://hdl.handle.net/11000/34216
Resumen :
It is demonstrated that data augmentation is a promising approach to reduce the size of the captured dataset required for training automatic road surface classifiers. The context is on-board systems for autonomous or semi-autonomous driving assistance: automatic power-assisted steering. Evidence is obtained by extensive experiments involving multiple captures from a 10-channel multisensor deployment: three channels from the accelerometer (acceleration in the X, Y, and Z axes); three microphone channels; two speed channels; and the torque and position of the handwheel. These captures were made under different settings: three worm-gear interface configurations; hands on or off the wheel; vehicle speed (constant speed of 10, 15, 20, 30 km/h, or accelerating from 0 to 30 km/h); and road surface (smooth flat asphalt, stripes, or cobblestones). It has been demonstrated in the experiments that data augmentation allows a reduction by an approximate factor of 1.5 in the size of the captured training dataset.
Palabras clave/Materias:
driving assistance
road surface classification
machine learning
data augmentation
Área de conocimiento :
CDU: Ciencias aplicadas: Ingeniería. Tecnología
Tipo de documento :
info:eu-repo/semantics/article
Derechos de acceso:
info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
https://doi.org/10.3390/app12073423
Aparece en las colecciones:
Artículos Ingeniería Comunicaciones



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.