Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/34211
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNakutis, Žilvinas-
dc.contributor.authorTervydis, Paulius-
dc.contributor.authorSvilainis, Linas-
dc.contributor.authorRodríguez Martínez, Alberto-
dc.contributor.otherDepartamentos de la UMH::Ingeniería de Comunicacioneses_ES
dc.date.accessioned2025-01-08T09:37:36Z-
dc.date.available2025-01-08T09:37:36Z-
dc.date.created2024-12-02-
dc.identifier.citationIEEE Acces, vol.12, 2024es_ES
dc.identifier.isbn2169-3536-
dc.identifier.urihttps://hdl.handle.net/11000/34211-
dc.description.abstractEdge computing, using battery-powered devices, presents a viable solution for the real-time data processing for smart agriculture solutions. This paper explores the application of edge computing acceleration for smart agriculture, focusing on the use case of resonant ultrasound spectroscopy (RUS) for grape leaf analysis and monitoring. A methodology for estimating the utilization and performance of both edge and cloud data processing devices is proposed here. The effectiveness of edge and cloud data processing systems is analyzed in terms of data processing waiting time, cost, and battery life of edge devices as a function of intensity of data processing requests and load distribution in various scenarios. The analysis considers such factors as data processing capabilities, equipment cost, and energy consumption to provide insights into the optimal deployment of edge and cloud resources for smart agriculture applications, considering critical waiting and battery time criteria.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent11es_ES
dc.language.isoenges_ES
dc.publisherInstituto de Ingenieros Eléctricos y Electrónicoses_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectSmart agriculturees_ES
dc.subjectedgees_ES
dc.subjectcloudes_ES
dc.subjectdata processinges_ES
dc.subjectmonitoringes_ES
dc.subject.otherCDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnologíaes_ES
dc.titleBattery Powered Edge Computing Acceleration for Smart Agriculture Applications: A Use Case for Resonant Ultrasound Spectroscopyes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1109/ACCESS.2024.3509732es_ES
Appears in Collections:
Artículos Ingeniería Comunicaciones


Thumbnail

View/Open:
 214232980.pdf

2,15 MB
Adobe PDF
Share:


Creative Commons ???jsp.display-item.text9???