Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/30803

Analysis of the Arabidopsis venosa4-0 mutant supports the role of VENOSA4 in dNTP metabolism


no-thumbnailView/Open:

 Sarmiento-Mañús et al. (2023).pdf



8,19 MB
Adobe PDF
Share:

This resource is restricted

Title:
Analysis of the Arabidopsis venosa4-0 mutant supports the role of VENOSA4 in dNTP metabolism
Authors:
Sarmiento, Raquel  
Fontcuberta-Cervera, Sara  
González-Bayón, Rebeca
Hannah, Matthew A.
Álvarez-Martínez, Francisco Javier  
Barrajón-Catalán, Enrique
Micol, Vicente
Quesada, Víctor  
Ponce, María Rosa  
Micol, José Luis  
Editor:
Elsevier
Department:
Departamentos de la UMH::Biología Aplicada
Issue Date:
2023-08-09
URI:
https://hdl.handle.net/11000/30803
Abstract:
Human Sterile alpha motif and histidine-aspartate domain containing protein 1 (SAMHD1) functions as a dNTPase to maintain dNTP pool balance. In eukaryotes, the limiting step in de novo dNTP biosynthesis is catalyzed by RIBONUCLEOTIDE REDUCTASE (RNR). In Arabidopsis, the RNR1 subunit of RNR is encoded by CRINKLED LEAVES 8 (CLS8), and RNR2 by three paralogous genes, including TSO MEANING 'UGLY' IN CHINESE 2 (TSO2). In plants, DIFFERENTIAL DEVELOPMENT OF VASCULAR ASSOCIATED CELLS 1 (DOV1) catalyzes the first step of the de novo biosynthesis of purines. Here, to explore the role of VENOSA4 (VEN4), the most likely Arabidopsis ortholog of human SAMHD1, we studied the ven4‐0 point mutation, whose leaf phenotype was stronger than those of its insertional alleles. Structural predictions suggested that the E249L substitution in the mutated VEN4-0 protein rigidifies its 3D structure. The morphological phenotypes of the ven4, cls8, and dov1 single mutants were similar, and those of the ven4 tso2 and ven4 dov1 double mutants were synergistic. The ven4‐0 mutant had reduced levels of four amino acids related to dNTP biosynthesis, including glutamine and glycine, which are precursors in the de novo purine biosynthesis. Our results reveal high functional conservation between VEN4 and SAMHD1 in dNTP metabolism.
Keywords/Subjects:
dNTP metabolism
Arabidopsis
VENOSA4 gene
ven4-0 mutant
SAMHD1 ortholog
Knowledge area:
CDU: Ciencias puras y naturales: Biología
Type of document:
application/pdf
Access rights:
info:eu-repo/semantics/closedAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI:
https://doi.org/10.1016/j.plantsci.2023.111819
Appears in Collections:
Artículos Biología Aplicada



Creative Commons ???jsp.display-item.text9???