Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/30610
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorRodríguez Ibáñez, Margarita-
dc.contributor.authorGimeno Blanes, Francisco Javier-
dc.contributor.authorCuenca Jiménez, Pedro Manuel-
dc.contributor.authorSoguero-Ruiz, Cristina-
dc.contributor.authorRojo-Álvarez, José Luis-
dc.contributor.otherDepartamentos de la UMH::Ingeniería de Comunicacioneses_ES
dc.date.accessioned2024-01-24T11:29:30Z-
dc.date.available2024-01-24T11:29:30Z-
dc.date.created2021-07-
dc.identifier.citationIEEE Access Volume: 9 (2021)es_ES
dc.identifier.issn2169-3536-
dc.identifier.urihttps://hdl.handle.net/11000/30610-
dc.description.abstractThe use of sentiment analysis methods has increased in recent years across a wide range of disciplines. Despite the potential impact of the development of opinions during political elections, few studies have focused on the analysis of sentiment dynamics and their characterization from statistical and mathematical perspectives. In this paper, we apply a set of basic methods to analyze the statistical and temporal dynamics of sentiment analysis on political campaigns and assess their scope and limitations. To this end, we gathered thousands of Twitter messages mentioning political parties and their leaders posted several weeks before and after the 2019 Spanish presidential election. We then followed a twofold analysis strategy: (1) statistical characterization using indices derived from well-known temporal and information metrics and methods –including entropy, mutual information, and the Compounded Aggregated Positivity Index– allowing the estimation of changes in the density function of sentiment data; and (2) feature extraction from nonlinear intrinsic patterns in terms of manifold learning using autoencoders and stochastic embeddings. The results show that both the indices and the manifold features provide an informative characterization of the sentiment dynamics throughout the election period. We found measurable variations in sentiment behavior and polarity across the political parties and their leaders and observed different dynamics depending on the parties’ positions on the political spectrum, their presence at the regional or national levels, and their nationalist or globalist aspirations.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent16es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineerses_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectSentiment analysises_ES
dc.subjecttwitteres_ES
dc.subjectsocial networking siteses_ES
dc.subjecttext analysises_ES
dc.subjectlexicones_ES
dc.subjectpoliticses_ES
dc.subjectcollected tweetses_ES
dc.subjectelection candidateses_ES
dc.subjectelection resultses_ES
dc.subjectmanifold embeddinges_ES
dc.subjectautoenconderses_ES
dc.subject.otherCDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnologíaes_ES
dc.titleSentiment Analysis of Political Tweets From the 2019 Spanish Electionses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1109/ACCESS.2021.3097492es_ES
Aparece en las colecciones:
Artículos Ingeniería Comunicaciones


Vista previa

Ver/Abrir:
 210715 Sentiment_Analysis_of_Political_Tweets_From_the_2019_Spanish_Elections.pdf

4,28 MB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.