Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/30602

Towards Organization Management Using Exploratory Screening and Big Data Tests: A Case Study of the Spanish Red Cross

Título :
Towards Organization Management Using Exploratory Screening and Big Data Tests: A Case Study of the Spanish Red Cross
Autor :
Rodríguez Ibáñez, Margarita  
Muñoz-Romero, Sergio  
Soguero-Ruiz, Cristina  
Gimeno Blanes, Francisco Javier  
Rojo-Álvarez, José Luis  
Editor :
Institute of Electrical and Electronics Engineers
Departamento:
Departamentos de la UMH::Ingeniería de Comunicaciones
Fecha de publicación:
2019-06
URI :
https://hdl.handle.net/11000/30602
Resumen :
With the emergence of information and communication technologies, a large amount of data has turned available for the organizations, which creates expectations on their value and content for management purposes. However, the exploratory analysis of available organizational data based on emerging Big Data technologies are still developing in terms of operative tools for solid and interpretable data description. In this work, we addressed the exploratory analysis of organization databases at early stages where little quantitative information is available about their efficiency. Categorical and metric single-variable tests are proposed and formalized in order to provide a mass criterion to identify regions in forms with clusters of significant variables. Bootstrap resampling techniques are used to provide nonparametric criteria in order to establish easy-to-use statistical tests, so that single-variable tests are represented each on a visual and quantitative statistical plot, whereas all the variables in a given form are jointly visualized in the so-called chromosome plots. More detailed profile plots offer deep comparison knowledge for categorical variables across the organization physical and functional structures, while histogram plots for numerical variables incorporate the statistical significance of the variables under study for preselected Pareto groups. Performance grouping is addressed by identifying two or three groups according to some representative empirical distribution of some convenient grouping feature. The method is applied to perform a Big-Data exploratory analysis on the follow-up forms of Spanish Red Cross, based on the number of interventions and on a by-record basis. Results showed that a simple one-variable blind-knowledge exploratory Big-Data analysis, as the one developed in this paper, offers unbiased comparative graphical and numerical information that characterize organizational dynamics in terms of applied resources, available capacities
Palabras clave/Materias:
Organizations
Databases
Big Data
Data mining
Tools
Measurement
Project management
Área de conocimiento :
CDU: Ciencias aplicadas: Ingeniería. Tecnología
Tipo de documento :
info:eu-repo/semantics/article
Derechos de acceso:
info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
https://doi.org/10.1109/ACCESS.2019.2923533
Aparece en las colecciones:
Artículos Ingeniería Comunicaciones



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.