Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/30567
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorFeijoo, Juan Ramón-
dc.contributor.authorGuerrero-Curieses, Alicia-
dc.contributor.authorGimeno Blanes, Francisco Javier-
dc.contributor.authorCastro Fernández, Mario Fernando-
dc.contributor.authorRojo-Álvarez, José Luis-
dc.contributor.otherDepartamentos de la UMH::Ingeniería de Comunicacioneses_ES
dc.date.accessioned2024-01-23T11:31:31Z-
dc.date.available2024-01-23T11:31:31Z-
dc.date.created2023-03-14-
dc.identifier.citationIEEE Access Volume: 11(2023)es_ES
dc.identifier.issn2169-3536-
dc.identifier.urihttps://hdl.handle.net/11000/30567-
dc.description.abstractHigh-Power electric grid networks require extreme security in their associated telecommunication network to ensure protection and control throughout power transmission. Accordingly, supervisory control and data acquisition systems form a vital part of any critical infrastructure, and the safety of the associated telecommunication network from intrusion is crucial. Whereas events related to operation and maintenance are often available and carefully documented, only some tools have been proposed to discriminate the information dealing with the heterogeneous data from intrusion detection systems and to support the network engineers. In this work, we present the use of deep learning techniques, such as Autoencoders or conventional Multiple Correspondence Analysis, to analyze and prune the events on power communication networks in terms of categorical data types often used in anomaly and intrusion detection (such as addresses or anomaly description). This analysis allows us to quantify and statistically describe highseverity events. Overall, portions of alerts around 5-10% have been prioritized in the analysis as first to handle by managers. Moreover, probability clouds of alerts have been shown to configure explicit manifolds in latent spaces. These results offer a homogeneous framework for implementing anomaly detection prioritization in power communication networks.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent17es_ES
dc.language.isoenges_ES
dc.publisherInstitute of Electrical and Electronics Engineerses_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectTelecommunication securityes_ES
dc.subjectintrusion detectiones_ES
dc.subjectdeep learninges_ES
dc.subjecthigh poweres_ES
dc.subjectpower communicationes_ES
dc.subjectlatent variableses_ES
dc.subjectalert prioritizationes_ES
dc.subjectalert manifoldses_ES
dc.subject.otherCDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnologíaes_ES
dc.titleCybersecurity Alert Prioritization in a Critical High Power Grid With Latent Spaceses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1109/ACCESS.2023.3255101es_ES
Aparece en las colecciones:
Artículos Ingeniería Comunicaciones


Vista previa

Ver/Abrir:
 230309 Cybersecurity_Alert_Prioritization_in_a_Critical_High_Power_Grid_With_Latent_Spaces.pdf

2,86 MB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.