Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/11000/38867
On measures of dissimilarity between point patterns: Classification based on prototypes and multidimensional scaling
Ver/Abrir: 2015 Mateu et al On measures of dissimilarity between point patterns - Biometrical_Journal.pdf
1,16 MB
Adobe PDF
Compartir:
Este recurso está restringido
Título : On measures of dissimilarity between point patterns: Classification based on prototypes and multidimensional scaling |
Autor : Mateu, Jorge Schoenberg, Frederic Paik Diez, David M. González Monsalve, Jonatan Andrey Lu, Weipeng |
Editor : Wiley |
Departamento: Departamentos de la UMH::Estadística, Matemáticas e Informática |
Fecha de publicación: 2015 |
URI : https://hdl.handle.net/11000/38867 |
Resumen :
This paper presents a collection of dissimilarity measures to describe and then classify spatial point patterns when multiple replicates of different types are available for analysis. In particular, we consider a range of distances including the spike-time distance and its variants, as well as cluster-based distances and dissimilarity measures based on classical statistical summaries of point patterns. We review and explore, in the form of a tutorial, their uses, and their pros and cons. These distances are then used to summarize and describe collections of repeated realizations of point patterns via prototypes and multidimensional scaling. We also show a simulation study to evaluate the performance of multidimensional scaling with two types of selected distances. Finally, a multivariate spatial point pattern of a natural plant community is analyzed through various of these measures of dissimilarity.
|
Palabras clave/Materias: classification K-function multidimensional scaling point patterns prototypes spike-time distance |
Área de conocimiento : CDU: Ciencias puras y naturales: Matemáticas |
Tipo de documento : info:eu-repo/semantics/article |
Derechos de acceso: info:eu-repo/semantics/closedAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
DOI : https://doi.org/10.1002/bimj.201300150 |
Publicado en: Biometrical Journal |
Aparece en las colecciones: Artículos - Estadística, Matemáticas e Informática
|
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.