Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/38199

Existence and characterization of attractors for a nonlocal reaction-diffusion equation with an energy functional

Título :
Existence and characterization of attractors for a nonlocal reaction-diffusion equation with an energy functional
Autor :
Caballero-Toro, Rubén
Marín-Rubio, Pedro
Valero, José
Editor :
Springer
Departamento:
Departamentos de la UMH::Estadística, Matemáticas e Informática
Fecha de publicación:
2021-02
URI :
https://hdl.handle.net/11000/38199
Resumen :
In this paper we study a nonlocal reaction-di¤usion equation in which the di¤usion depends on the gradient of the solution. Firstly, we prove the existence and uniqueness of regular and strong solutions. Secondly, we obtain the existence of global attractors in both situations under rather weak assumptions by de ning a multivalued semi ow (which is a semigroup in the particular situation when uniqueness of the Cauchy problem is satis ed). Thirdly, we characterize the attractor either as the unstable manifold of the set of stationary points or as the stable one when we consider solutions only in the set of bounded complete trajectories.
Palabras clave/Materias:
Reaction-diffusion equations
Nonlocal equations
Global attractors
Multivalued dynamical systems
Structure of the attractor
Tipo de documento :
info:eu-repo/semantics/article
Derechos de acceso:
info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
https://doi.org/10.1007/s10884-020-09933-5
Publicado en:
Journal of Dynamics and Differential Equations, Vol. 34 (2022)
Aparece en las colecciones:
Artículos Estadística, Matemáticas e Informática



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.