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Abstract

In this paper we study a nonlocal reaction-diffusion equation in which the diffusion depends on
the gradient of the solution.

Firstly, we prove the existence and uniqueness of regular and strong solutions. Secondly, we obtain
the existence of global attractors in both situations under rather weak assumptions by defining a
multivalued semiflow (which is a semigroup in the particular situation when uniqueness of the Cauchy
problem is satisfied). Thirdly, we characterize the attractor either as the unstable manifold of the
set of stationary points or as the stable one when we consider solutions only in the set of bounded
complete trajectories.
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1 Introduction

In real applications there might exist several nonlocal effects that influence the evolution of a system. For
instance, usually we do not have enough information about the systems under study and its features at
every point. In reality, the measurements are not made pointwise but through some local average. This is
just one possible reason of introducing nonlocal terms in models. Actually, during the last decades many
mathematicians have been studying nonlocal problems motivated by its various applications in physics,
biology or population dynamics [13, 14, 15, 16, 17, 27].
For instance, let consider the problem of finding a function u(t, x) such that ut − a(

∫
Ω
u(t, x)dx)∆u = g(t, u), in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞),
u(0) = u0 in Ω.

(1)

Here Ω is a bounded open subset in Rn, n ≥ 1, with smooth boundary and a is some function from R
to (0,+∞). In such equation u could describe the density of a population subject to spreading. The
diffusion coeffi cient a is then supposed to depend on the entire population in the domain rather than on
the local density.
A wide literature with significant results about (1) have been developed during the last few decades

(see for example [14, 17, 27]). However, it is possible to distinguish two basic cases of the following more
general equation  ut − a(u)∆u = g(t, u), t > 0, x ∈ Ω,

u = 0, on ∂Ω× (0,∞) ,
u(0, x) = u0(x) x ∈ Ω.
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Some authors consider a depending on a linear functional l(u), i.e.,

a(u) = a(l(u))

with

l(u) =

∫
Ω

Φ(x)u(x, t)dx,

where Φ(x) is a given function in L2(Ω). For g(t, u) = f(t) the existence and uniqueness of solutions
and their asymptotic behavior are studied for example in [15, 16, 18, 32]. For g(t, u) = f(u) + h(t)
the existence, uniqueness and asymptotic behaviour of solutions is studied in [1, 6, 8, 9]. Moreover, the
authors prove the existence of pullback attractors in L2(Ω) and H1

0 (Ω). Extensions in this direction for
equations governed by the p-laplacian operator instead of the laplacian operator ∆ are given in [7, 10],
whereas nonclassical diffusion equations are considered in [29].
On the other hand, it is possible to consider a function a such that a (u) = a(‖u‖2

H1
0
). The existence

and uniqueness of solutions of the following problem
ut − a(‖u‖2

H1
0
)∆u = f, t > 0, x ∈ Ω,

u = 0, on ∂Ω× (0,∞) ,
u(0, x) = u0(x) x ∈ Ω.

is proved in [32, 19], where f ∈ L2(Ω), u0 ∈ H1
0 (Ω) and a = a(s) is a continuous function such that

0 < m ≤ a(s) ≤M.
By this way, in this paper the following problem is considered

ut − a(‖u‖2
H1
0
)∆u = f(u) + h(t), in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞),
u(0, x) = u0 (x) in Ω,

(2)

where h ∈ L2(0, T ;L2(Ω)), for all T > 0, a : R+ → R+ is a continuous function such that a (s) ≥ m > 0
and f is a continuous function satisfying standard dissipative and growth conditions (see (7) below).

The aim of this paper is three-fold. First, we will prove the existence of solutions for problem (2) under
different assumptions on the nonlinear function f . Second, we will obtain the existence of attractors for
the semiflows generated by either regular or strong solutions in the autonomous case, that is, when h does
not depend on time. Third, we establish that the global attractor can be characterized by the unstable
manifold of the set of stationary points. It is important to notice that the proof of this last fact requires
the existence of a Lyapunov function on the attractor, and for this aim the term a(‖u‖2

H1
0
) is crucial. In

the case when a(u) = a(l(u)) it is not known whether such a function exists or not.
We prove the existence of strong solutions by assuming that either the function f is continuously

differentiable and f ′ (s) ≤ η or a more strict growth condition on f. Supposing additionaly that the
function a has sublinear growth we prove the existence of regular solutions as well. Moreover, when
f ′ (s) ≤ η and the function s 7→ a

(
s2
)
s is non-decreasing, uniqueness is proved.

When studying the asymptotic behaviour of solutions, new challenging diffi culties arise for problem
(2). For this problem we consider the autonomous situation, that is, h ∈ L2 (Ω) does not depend on t.
If uniqueness holds, then we define classical semigroups (one for regular solutions and one for strong

solutions) and prove the existence of the global attractor. Under some extra assumptions on the functions
a, h we are able to obtain that the global attractor is bounded in H2 (Ω) and L∞ (Ω).

If uniqueness is not known to be true, then we have to define a (possibly) multivalued semiflow. Then
the existence of the global attractor is proved for regular solutions in the topology of the space L2 (Ω)
and for strong solutions in the topology of the space H1

0 (Ω) (or H1
0 (Ω) ∩ Lp (Ω)), extending in this way

the known results for the local problem [21].
The structure of the global attractor is an important feature as it gives us an insight into the long-term

dynamics of the solutions. In the multivalued situation it is a challenging problem that has not been
completely understood yet. So far in the local case several results in this direction have been obtained
for reaction-diffusion equations without uniqueness [2, 5, 21, 22].
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In our nonlocal problem for both situations (for regular and strong solutions) we are able under some
conditions to define a Lyapunov function on the attractor and to prove that it is characterized as the
unstable set of the stationary points (denoted by Mu (R)). Also, the attractor is equal to the stable
set of the stationary points when we consider solutions only in the set of bounded complete trajectories
(denoted by Ms (R)).

2 Existence of solutions

Throughout this paper we will denote by ‖·‖X the norm in the Banach space X.
We consider the following nonlocal reaction-diffusion equation

ut − a(‖u‖2
H1
0
)∆u = f(u) + h(t), in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞),
u(0, x) = u0(x) in Ω,

(3)

where Ω is a bounded open set of Rn with smooth boundary ∂Ω.
Let us consider the following conditions on the functions a, f, h :

h ∈ L2(0, T ;L2(Ω)) ∀T > 0, (4)

a ∈ C(R+), f ∈ C(R), (5)

a (s) ≥ m > 0, (6)

−κ− α2|s|p ≤ f(s)s ≤ κ− α1|s|p, (7)

where m, α1, α2 > 0 and κ ≥ 0, p ≥ 2. Observe that then there exists C > 0 such that

|f(s)| ≤ C(1 + |s|p−1) ∀s ∈ R, (8)

and that the function F(s) :=
∫ s

0
f(r)dr satisfies

−α̃2|s|p − κ̃ ≤ F(s) ≤ κ̃− α̃1|s|p (9)

for certain positive constants α̃i, i = 1, 2, and κ̃ ≥ 0, and

|F(s)| ≤ C̃(1 + |s|p) ∀s ∈ R. (10)

Conditions (4)-(7) will be always assumed throughout the paper. Sometimes, some of the following
additional assumptions will also be used:

f ∈ C1(R) be such that f ′(s) ≤ η, ∀s ∈ R, (11)

p ≤ 2n− 2

n− 2
, if n ≥ 3, (12)

a (s) ≤M1 +M2s, ∀s ≥ 0, (13)

s 7→ a(s2)s is non-decreasing, (14)

a (·) ∈ C1
(
R+
)
and a′ (s) ≥ 0, ∀s ≥ 0, (15)

for some constants M1,M2, η ≥ 0.

Remark 1 a′ (s) ≥ 0 implies that (14) holds, so condition (15) is stronger than (14). Assumption (14)
is used to prove uniqueness of solutions. Assumption (15) is used to obtain the H2 (Ω) regularity of the
global attractor.
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Definition 2 A weak solution to (3) is a function u (·) such that u ∈ L∞(0, T ;L2(Ω))∩L2(0, T ;H1
0 (Ω))∩

Lp(0, T ;Lp(Ω)) for any T > 0 and satisfies the equality

d

dt
(u, v) + a(‖u(t)‖2H1

0
)(∇u(t),∇v) = (f(u(t)), v) + (h(t), v) ∀v ∈ H1

0 (Ω) ∩ Lp(Ω), (16)

in the sense of scalar distributions.

Here, we denote by (·, ·) the inner product in L2(Ω) (or
(
L2(Ω)

)d
for d ∈ N) and also the duality

product between Lp(Ω) and Lq(Ω) (where q is the conjugate exponent of p, that is, q = p/(p− 1)). The
duality between H1

0 (Ω) and H−1 (Ω) will be denoted by 〈·,·〉 .
We need to guarantee that the initial condition of the problem makes sense for a weak solution. This

can be achieved in a standard way assuming that the function a has an upper bound, that is, there exists
M > 0 such that

a (s) ≤M for all s ≥ 0. (17)

Indeed, if u is a weak solution to (3), taking into account (8) and (17) it follows that

ut = a(‖u‖2H1
0
)∆u+ f(u) + h ∈ L2(0, T ;H−1(Ω)) + Lq(0, T ;Lq(Ω)). (18)

Therefore, by [12, p.33] u ∈ C([0, T ], L2(Ω)) and the initial condition makes sense when u0 ∈ L2(Ω).
For the operator A = −∆, thanks to the assumptions on the domain Ω, it is well known that

D(A) = H2(Ω) ∩H1
0 (Ω) [30, Proposition 6.19].

Definition 3 A regular solution to (3) is a weak solution with the extra regularity u ∈ L∞(ε, T ;H1
0 (Ω))

and u ∈ L2(ε, T ;D(A)) for any 0 < ε < T.

Remark 4 Since
du

dt
∈ Lq (ε, T ;Lq (Ω)) for any regular solution, in this case equality (16) is equivalent

to the following one: ∫ T

ε

∫
Ω

du (t, x)

dt
ξ (t, x) dxdt−

∫ T

ε

a(‖u(t)‖2H1
0
)

∫
Ω

∆uξdxdt (19)

=

∫ T

ε

∫
Ω

f (u (t, x)) ξ (t, x) dxdt+

∫ T

ε

∫
Ω

h (t, x) ξ (t, x) dxdt,

for all 0 < ε < T and ξ ∈ Lp (0, T ;Lp (Ω)) .

Lemma 5 Let u ∈ Lp (ε, T ;X),
du

dt
∈ Lq (ε, T ;X ′) for all 0 < ε < T , where X is a reflexive and

separable Banach space and X ′ denotes its dual space. Assume that β ∈ C(R+) is such that β ∈
W 1,∞(ε, T ; [β (ε) , β (T )]) and 0 < β (ε) < β (T ) for all 0 < ε < T . Then w (·) = u (β (·)) ∈ Lp (ε, T ;X),
dw

dt
∈ Lq (ε, T ;X ′) , for all 0 < ε < T , and

dw

dt
(t) =

du

dt
(β (t))

dβ

dt
(t) for a.a. t > 0. (20)

Proof. We fix arbitrary 0 < ε < T . There exists a sequence un ∈ C1 ([β (ε) , β(T )], X) such that

un → u in Lp (β (ε) , β(T );X) and
dun
dt
→ du

dt
in Lq (β (ε) , β(T );X ′) [20, Chapter IV]. We define wn (t) =

un (β (t)). Following the same proof of [4, Corollary VIII.10] we obtain that wn (·) ∈W 1,∞ (ε, T ;X) and

dwn
dt

(t) =
dun
dt

(β (t))
dβ

dt
(t) for a.a. t > 0.

It is clear that wn → w in Lp (ε, T ;X) and
dun
dt

(β (·))→ du

dt
(β (·)) in Lq (ε, T ;X ′). Passing to the limit

we obtain that
dw

dt
(·) =

du

dt
(β (·)) dβ

dt
(·)
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in the sense of distributions D′ (0,+∞;X). As
du

dt
(β (·)) dβ

dt
(·) ∈ Lq (ε, T ;X ′),

dw

dt
∈ Lq (ε, T ;X ′) and

(20) holds true.

We would like to avoid a being uniformly bounded by above (i.e. to relax assumption (17)). We
can still prove the continuity in L2 (Ω) of u for regular solutions by assuming that a has at most linear
growth.

Lemma 6 Assume that conditions (4)-(7), (13) hold. Then any regular solution satisfies that u ∈
C([0, T ], L2(Ω)) for all T > 0. Moreover, w (t) = u

(
α−1 (t)

)
, where α(t) =

∫ t
0
a(‖u(s)‖2

H1
0
)ds, is a regular

solution to the problem 
wt −∆w =

f(w) + h(t)

a(‖w‖2
H1
0
)
, in Ω× (0,∞),

w = 0 on ∂Ω× (0,∞),
w(0, x) = u0(x) in Ω.

(21)

Proof. Condition (13) guarantees that a(‖u(·)‖2
H1
0
) ∈ L1 (0, T ) if u ∈ L2

(
0, T ;H1

0 (Ω)
)
. We make the

following time rescaling
u(t, x) = w(α(t), x).

As a(‖u(·)‖2
H1
0
) ∈ L1 (0, T ), the function t 7→ α (t) is continuous and β (·) = α−1 (·) satisfies the conditions

of Lemma 5. It is clear that the function w (t, x) = u(α−1 (t) , x) belongs to the space L∞(0, T ;L2(Ω)) ∩
L2(0, T ;H1

0 (Ω)) ∩ Lp(0, T ;Lp(Ω)) and also to the spaces L∞(ε, T ;H1
0 (Ω)) and L2(ε, T ;D(A)) for any

0 < ε < T . Moreover,
du

dt
∈ Lq (ε, T ;Lq (Ω)) and Lemma 5 give

dw

dt
∈ Lq (ε, T ;Lq (Ω)) and

dw

dt
(t) =

du

dt

(
α−1 (t)

) d
dt
α−1 (t) =

du

dt

(
α−1 (t)

) 1

a
(
‖w(t))‖2

H1
0

) , for a.a. t. (22)

Equality (19) implies that

du

dt

(
α−1 (t)

)
− a

(
‖u(α−1(t))‖2H1

0

)
∆u
(
α−1 (t)

)
= f

(
u
(
α−1 (t)

))
+ h(t), for a.a. t > 0,

so (22) gives
dw

dt
(t)−∆w (t) =

f(w(t))

a(‖w (t) ‖2
H1
0
)

+
h(t)

a(‖w (t) ‖2
H1
0
)
for a.a. t > 0.

Hence, w is a regular solution to problem (21). Since 0 <
1

a(s)
≤ 1

m
, we obtain that

dw

dt
∈ L2(0, T ;H−1(Ω)) + Lq(0, T ;Lq(Ω)).

Therefore, w ∈ C([0, T ], L2(Ω)), so that

u ∈ C([0, T ], L2(Ω)).

Remark 7 Under assumptions (4)-(7) any regular solution u (·) satisfies that du
dt
∈ Lq (ε, T ;Lq (Ω)) for

all 0 < ε < T . Then by [12, p.33] u ∈ C([ε, T ], L2 (Ω)), t 7→ ‖u (t)‖2 is absolutely continuous on [ε, T ]
and

d

dt
‖u (t)‖2L2 = 2

(
du

dt
, u

)
for a.a. t > ε.

If the initial condition belongs to H1
0 (Ω) ∩ Lp (Ω), we can define strong solutions as well.
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Definition 8 A strong solution to (3) is a weak solution with the extra regularity u ∈ L∞(0, T ;H1
0 (Ω)∩

Lp(Ω)), u ∈ L2(0, T ;D(A)) and
du

dt
∈ L2

(
0, T ;L2 (Ω)

)
for any T > 0.

We observe that if u is a strong solution, then u ∈ C([0, T ], H1
0 (Ω)) (see [31, p.102]). Also, u ∈

L∞(0, T ;Lp(Ω)) and u ∈ C([0, T ], L2 (Ω)) imply that u ∈ Cw([0, T ], Lp(Ω)) (see [33, p.263]). Thus, an

initial condition in H1
0 (Ω)∩Lp (Ω) makes sense. Also, the equality f (u) = ut−a

(
‖u‖2H1

0

)
∆u−h implies

that f (u) ∈ L2
(
0, T ;L2 (Ω)

)
Also, if u is a regular solution such that

du

dt
∈ L2

(
ε, T ;L2 (Ω)

)
for all 0 < ε < T , then u ∈

C((0, T ], H1
0 (Ω)).

The phase space for regular solutions will be L2 (Ω), whereas for strong solutions we will use the space
H1 (Ω) ∩ Lp (Ω) (or just H1

0 (Ω) when H1
0 (Ω) ⊂ Lp (Ω)).

The following results will be proved in Theorems 9, 10, 11, 12, 14:

• Conditions (4)-(7), (11), (13) imply the existence of at least one regular solution for any u0 ∈ L2(Ω).
If, in addition, (14) holds, then it is the unique regular solution.

• Conditions (4)-(7), (11) imply the existence of at least one strong solution for any u0 ∈ H1
0 (Ω) ∩

Lp(Ω). If, in addition, (14) holds, then it is the unique strong solution.

• Conditions (4)-(7), (12) imply the existence of at least one strong solution for any u0 ∈ H1
0 (Ω).

• Conditions (4)-(7), (12), (17) imply the existence of at least one regular solution for any u0 ∈ L2(Ω).

To start with we prove the existence of regular solutions for initial conditions in L2 (Ω) .

Theorem 9 Assume that conditions (4)-(7), (11) and (13) hold. Then, for any u0 ∈ L2(Ω) there exists
at least one regular solution to (3).

Proof. We will prove the result by compactness and using Faedo-Galerkin approximations.
Consider a fixed value T > 0. Let {wj}j≥1 be a sequence of eigenfunctions of −∆ in H1

0 (Ω) with ho-
mogeneous Dirichlet boundary conditions, which forms a special basis of L2(Ω). If Ω is a bounded regular
domain, then it is well known that {wj} ⊂ H1

0 (Ω)∩Lp(Ω) and that for the set Vn = span[w1, . . . , wn] we
have that ∪n∈NVn is dense in L2(Ω) and also in H1

0 (Ω)∩Lp(Ω) [25]. As usual, Pn will be the orthogonal
projection in L2 (Ω), that is

zn := Pnz =

n∑
j=1

(z, wj)wj ,

and λj will be the eigenvalues associated to the egienfunctions wj . For each integer n ≥ 1, we consider
the Galerkin approximations

un(t) =

n∑
j=1

γnj(t)wj ,

which satisfy the following nonlinear ODE system{
d

dt
(un, wi) + a(‖un‖2H1

0
)(∇un,∇wi) = (f(un), wi) + (h,wi) ∀i = 1, . . . , n,

un(0) = Pnu0.
(23)

where Pnu0 → u0 in L2(Ω). Since (23) can be written in the normal form with a continuous right-hand
side, this Cauchy problem possesses a solution on some interval [0, tn). We claim that for any T > 0 such
a solution can be extended to the whole interval [0, T ], which follows from a priori estimates in the space
L2(Ω) of the sequence {un}.
Multiplying by γni(t) and summing from i = 1 to n, we obtain

1

2

d

dt
‖un(t)‖2L2 + a(‖un‖2H1

0
)‖un(t)‖2H1

0
= (f(un(t)), un(t)) + (h, un(t)) for a.e. t ∈ (0, tn). (24)
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Using (7) and the Young and Poincaré inequalities we deduce that

(f(un(t)), un(t)) ≤ κ|Ω| − α1‖un(t)‖pLp ,

(h(t), un(t)) ≤ m

2
‖un(t)‖2H1

0
+

1

2λ1m
‖h(t)‖2L2 .

Hence, from (24) it follows that

1

2

d

dt
‖un(t)‖2L2 +

m

2
‖un(t)‖2H1

0
+ α1‖un(t)‖pLp ≤ κ|Ω|+

1

2λ1m
‖h(t)‖2L2 for a.e. t ∈ (0, tn). (25)

Then, integrating (25) from 0 to t ∈ (0, tn) we deduce

1

2
‖un(t)‖2L2 +

m

2

∫ t

0

‖un(s)‖2H1
0
ds+ α1

∫ t

0

‖un(s)‖pLpds

≤ κ|Ω|t+
1

2λ1m

∫ t

0

‖h(s)‖2L2ds+
1

2
‖un(0)‖2L2 ≤ TK2 +K3(T ) +

1

2
‖un(0)‖2L2 .

(26)

Therefore, the sequence {un} is well defined and bounded in L∞(0, T ;L2(Ω))∩L2(0, T ;H1
0 (Ω))∩Lp(0, T ;Lp(Ω)).

Also, {−∆un} is bounded in L2(0, T ;H−1(Ω)).
On the other hand, by (8) it follows that∫ T

0

∫
Ω

|f(u(x, t))|qdxdt ≤ 2q−1Cq(|Ω|T +

∫ T

0

‖u(t)‖pLpdt),

with 1
p + 1

q = 1. Hence, since {un} is bounded in Lp(0, T ;Lp(Ω)), {f(un)} is bounded in Lq(0, T ;Lq(Ω)).
On the other hand, multiplying (23) by λiγni(t) and summing from i = 1 to n, we obtain

1

2

d

dt
‖un‖2H1

0
+m‖∆un‖2L2 ≤ 〈f(un),−∆un〉+ (h(t),−∆un) ≤ η‖un‖2H1

0
+

1

2m
‖h(t)‖2L2 +

m

2
‖∆un‖2L2 .

Integrating the previous expression between s and t, with 0 < s ≤ t ≤ T, and using (11) we have

1

2
‖un(t)‖2H1

0
+
m

2

∫ t

s

‖∆un(r)‖2L2dr ≤ η
∫ T

0

‖un(r)‖2H1
0
dr +

1

2
‖un(s)‖2H1

0
+

1

2m

∫ t

s

‖h(r)‖2L2dr. (27)

Now, integrating in s between 0 and t, it follows that

t‖un(t)‖2H1
0
≤ (2ηT + 1)

∫ T

0

‖un(r)‖2H1
0
dr +K3(T )T.

Hence,

‖un(t)‖2H1
0
≤ 2ηT + 1

ε

∫ T

0

‖un(r)‖2H1
0
dr +

K3(T )T

ε
. (28)

for all t ∈ [ε, T ] with ε ∈ (0, T ). From the last inequality and (26) we deduce that {‖un(t)‖H1
0
} is uniformly

bounded in [ε, T ] and by the continuity of the function a we get that {a(‖un(t)‖2
H1
0
)} is bounded in [ε, T ].

Also, it follows that
{un} is bounded in L∞(ε, T ;H1

0 (Ω)). (29)

On the other hand, taking s = ε and t = T in (27), by (26) we obtain that

{un} is bounded in L2(ε, T ;D(A)), (30)

so {−∆un} and {a(‖un‖2H1
0
)∆un} are bounded in L2(ε, T ;L2(Ω)). Thus,{

dun
dt

}
is bounded in Lq(ε, T ;Lq(Ω)). (31)
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Therefore, there exists u ∈ L∞(ε, T ;H1
0 (Ω)) ∩ L2(0, T ;H1

0 (Ω)) ∩ L∞(0, T ;L2(Ω)) ∩ L2(ε, T ;D(A)) ∩
Lp(0, T ;Lp(Ω)) such that

du

dt
∈ Lq(ε, T ;Lq (Ω)) and a subsequence {un}, relabelled the same, such that

un
∗
⇀ u in L∞(ε, T ;H1

0 (Ω)),

un
∗
⇀ u in L∞(0, T ;L2(Ω)),

un ⇀ u in L2(0, T ;H1
0 (Ω)),

un ⇀ u in Lp(0, T ;Lp(Ω)),

un ⇀ u in L2(ε, T ;D(A)),

dun
dt

⇀
du

dt
in Lq(ε, T ;Lq(Ω)),

f(un) ⇀ χ in Lq(0, T ;Lq(Ω)),

a(‖un‖2H1
0
)
∗
⇀ b in L∞(ε, T ),

(32)

for any 0 < ε < T , where ⇀ means weak convergence and ∗⇀ weak star convergence.
Moreover, by (30)-(31) the Aubin-Lions Compactness Lemma gives that un → u in L2(ε, T ;H1

0 (Ω)),
so un(t) → u(t) in H1

0 (Ω) a.e. on (ε, T ) for any ε > 0. Consequently, there exists a subsequence {un},
relabelled the same, such that un (t, x)→ u (t, x) a.e. in Ω×(0, T ). Also, we know that Pnf(un) ⇀ χ (see
[30, p.224]). Since f is continuous, it follows that f(un (t, x))→ f(u (t, x)) a.e. in Ω× (0, T ). Therefore,
in view of (32), by [26, Lemma 1.3] we have that χ = f(u).
As a consequence, by the continuity of a, we get that

a(‖un(t)‖2H1
0
)→ a(‖u(t)‖2H1

0
) a.e. on (ε, T ).

Since the sequence is bounded, by the Lebesgue theorem this convergence takes place in L2(ε, T ) and
b = a(‖u‖2

H1
0
) on (ε, T ). Thus,

a(‖un‖2H1
0
)∆un ⇀ a(‖u‖2H1

0
)∆u, in L2(ε, T ;L2(Ω)). (33)

Finally, since {wi} is dense in H1
0 (Ω) ∩ Lp(Ω), in view of (32) and (33), we can pass to the limit in

(23) and conclude that (16) holds for all v ∈ H1
0 (Ω) ∩ Lp(Ω).

To conclude the proof, we have to check that u(0) = u0. Indeed, let be φ ∈ C1([0, T ]);H1
0 (Ω)∩Lp(Ω)),

with φ(T ) = 0, φ(0) 6= 0. We consider the functions w (t) = u(α−1 (t)), wn (t) = un
(
α−1
n (t)

)
(here

αn(t) =
∫ t

0
a(‖un (r) ‖2

H1
0
dr)), which by Lemma 6 are regular solutions to problem (21) with initial

conditions w (0) = u0 and to the corresponding Galerkin approximations with initial condition wn (0) =

un (0) = Pnu0, respectively. Since
dw

dt
∈ L2(0, T ;H−1(Ω))+Lq(0, T ;Lq(Ω)), we can multiply the equation

in (21) by φ and integrate by parts in the t variable to obtain that∫ T

0

(− (w (t) , φ′ (t))− 〈∆w (t) , φ (t)〉) dt =

∫ T

0

(
f(w(t)) + h(t)

a(‖w(t)‖2
H1
0
)
, φ (t)

)
dt+ (w (0) , φ (0)) , (34)

∫ T

0

(− (wn (t) , φ′ (t))− 〈∆wn (t) , φ (t)〉) dt =

∫ T

0

(
Pnf(wn(t)) + Pnh(t)

a(‖wn(t)‖2
H1
0
)

, φ (t)

)
dt+ (wn (0) , φ (0)) .

(35)
We can easily obtain by the previous convergences and (6) that

wn ⇀ w in L2
(
0, T ;H1

0 (Ω)
)
,

∆wn ⇀ ∆w in L2
(
0, T ;H−1 (Ω)

)
,

Pnf(wn(t)) + Pnh (t)

a(‖wn(t)‖2
H1
0
)

⇀
f(w(t)) + h (t)

a(‖w(t)‖2
H1
0
)
in Lq (0, T ;Lq (Ω)) .
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Passing to the limit in (35), taking in to account (34) and bearing in mind wn(0) = Pnu0 → u0 we get

(w (0) , φ (0)) = (u0, φ (0)) .

Since φ (0) ∈ H1
0 (Ω) ∩ Lp(Ω) is arbitrary, we infer that w(0) = u (0) = u0.

Hence, u is a regular solution to (3) satisfying u (0) = u0.

Second, we will prove the existence of strong solutions for initial conditions in H1
0 (Ω)∩Lp(Ω). In this

case, we do not need to impose the upper bound (13) of the function a.

Theorem 10 Suppose that conditions (4)-(7) and (11) are fulfilled. Then, for any u0 ∈ H1
0 (Ω) ∩ Lp(Ω)

there exists at least a strong solution to (3).

Proof. We consider, as in Theorem 9, the Galerkin approximations {un} and an element u for which
(32) holds. Under the aforementioned conditions, we will obtain that un converges to a strong solution to
(3). In this proof it is important to observe that Pnu0 → u0 in the spaces H1

0 (Ω) and Lp (Ω) [30, p.199
and 220]. Thus, the sequences ‖Pnu0‖H1

0
and ‖Pnu0‖Lp are bounded.

First, we multiply the equation in (23) by
dun
dt

to obtain

‖ d
dt
un(t)‖2L2 + a(‖un‖2H1

0
)
1

2

d

dt
‖un‖2H1

0
=

d

dt

∫
Ω

F(un)dx+ (h(t),
dun
dt

).

Introducing

A(s) =

∫ s

0

a(r)dr, (36)

we have
1

2
‖ d
dt
un(t)‖2L2 +

d

dt

[
1

2
A(‖un‖2H1

0
)−

∫
Ω

F(un(t))dx

]
≤ 1

2
‖h(t)‖2L2 . (37)

Now, integrating (37) we have

1

2

∫ t

0

‖ d
ds
un(s)‖2L2ds+

1

2
A(‖un(t)‖2H1

0
)−

∫
Ω

F(un(t))dx

≤ 1

2
A(‖un(0)‖2H1

0
)−

∫
Ω

F(un(0))dx+
1

2

∫ t

0

‖h(s)‖2L2ds.

From (6) and (9) we get

m

2
‖un(t)‖2H1

0
+ α̃1‖un(t)‖pLp +

1

2

∫ t

0

‖ d
ds
un(s)‖2L2ds

≤ 1

2
A(‖un(0)‖2H1

0
) + α̃2‖un(0)‖pLp +K(T ).

(38)

Now, from (38) we obtain that {
dun
dt

}
is bounded in L2(0, T ;L2(Ω)), (39)

so
dun
dt

⇀
du

dt
in L2(0, T ;L2(Ω)). (40)

On the other hand, the embedding H1
0 (Ω) ⊂⊂ L2(Ω) and the Aubin-Lion Compactness Lemma imply

that
un → u in L2(0, T ;L2(Ω)).

Hence,
un → u for a.e. (x, t) ∈ Ω× (0, T ).
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Moreover, thanks to

‖un(t2)− un(t1)‖2L2 =

∥∥∥∥∫ t2

t1

d

dt
un(s)ds

∥∥∥∥2

L2
≤ ‖ d

dt
un‖2L2(0,T ;L2(Ω)) |t2 − t1| ∀t1, t2 ∈ [0, T ],

(38), (39) and H1
0 (Ω) ⊂⊂ L2(Ω), the Ascoli-Arzelà theorem implies that {un} converges strongly in the

space C([0, T ];L2(Ω)) for all T > 0. Therefore, we obtain from (38) that un(t) ⇀ u(t) in H1
0 (Ω)∩Lp(Ω),

for any t ≥ 0, and
un

∗
⇀ u in L∞(0, T ;H1

0 (Ω) ∩ Lp(Ω)). (41)

Also, by the continuity of the function a,
{
a(‖un (t) ‖2

H1
0
)
}
is uniformly bounded in [0, T ].

Multiplying (23) by λiγni(t) and summing from i = 1 to n, we obtain

1

2

d

dt
‖un‖2H1

0
+m‖−∆un‖2L2 = (f(un),−∆un) + (h(t),−∆un) ≤ η‖un‖2H1

0
+

1

2m
‖h(t)‖2L2 +

m

2
‖−∆un‖2L2 .

Integrating the previous expression between 0 and T it follows that

1

2
‖un(T )‖2H1

0
+
m

2

∫ T

0

‖∆un(s)‖2L2ds ≤ η
∫ T

0

‖un(t)‖2H1
0
dt+

1

2
‖un(0)‖2H1

0
+K(T ). (42)

Finally, taking into account (26), from (42) we deduce that

un is uniformly bounded in L2(0, T ;D(A)),

so
un ⇀ u in L2(0, T ;D(A)). (43)

Arguing as in Theorem 9 we also obtain that

un → u in L2
(
0, T ;H1

0 (Ω)
)
,

a
(
‖un‖2H1

0

)
→ a

(
‖u‖2H1

0

)
in L2 (0, T ) ,

f (un) ⇀ f (u) in Lq (0, T ;Lq (Ω)) ,

a
(
‖un‖2H1

0

)
∆un ⇀ a

(
‖u‖2H1

0

)
∆u in L2(0, T ;L2(Ω)). (44)

Therefore, we can pass to the limit to conclude that u is a strong solution.
It remains to show that u (0) = u0. This can be done, in a similar way as in Theorem 9, by multiplying

the equation in (3) by a function φ ∈ C1([0, T ]);H1
0 (Ω)∩Lp(Ω)), with φ(T ) = 0, φ(0) 6= 0 for the Galerkin

approximations un and the limit function u and integrating by parts. Then taking into account the above
convergences and Pnu0 → u0 in L2 (Ω) we obtain that u (0) = u0.

We can still ensure the existence of strong solutions without using condition (11) by imposing extra
assumptions on the parameter p. Indeed, if (12) is satisfied, then the embedding H1

0 (Ω) ⊂ L2(p−1) (Ω) ⊂
Lp (Ω) and (8) imply that

||f(u(t))||2L2 ≤ 2C(1 +

∫
Ω

|u(t, x)|2(p−1)dx) ≤ C̃
(

1 + ‖u (t)‖2(p−1)

H1
0

)
, (45)

so
f(u) ∈ L2(0, T ;L2(Ω)) (46)

provided that u ∈ L∞(0, T ;H1
0 (Ω)). Moreover, f (A) is bounded in L2(0, T ;L2(Ω) if A is a bounded set

of L∞(0, T ;H1
0 (Ω)).

Theorem 11 Assume that (4)-(7) and (12) hold. Then for any u0 ∈ H1
0 (Ω) there exists at least one

strong solution to (3).
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Proof. Reasoning as in Theorem 10 and considering as well the Galerkin scheme, (32), (40) and (41)
hold. We just need to check that (43) is also true and then repeat the same lines of Theorem 10.
Multiplying (23) by λiγni(t) and summing from i = 1 to n, we obtain

1

2

d

dt
‖un‖2H1

0
+m‖∆un‖2L2 = (f(un),−∆un) + (h(t),−∆u)

≤ 1

2m
‖f(un)‖2L2 +

m

2
‖ −∆un‖2L2 +

1

m
‖h(t)‖2L2 +

m

4
‖∆un‖2L2 .

Integrating between 0 and T it follows that

1

2
‖un(T )‖2H1

0
+
m

4

∫ T

0

‖∆un(s)‖2L2ds

≤ 1

2m

∫ T

0

‖f(un(t))‖2L2dt+
1

2
‖un(0)‖2H1

0
+

1

m

∫ T

0

‖h(t)‖2L2dt.
(47)

In view of (41) and (45), we have that f (u) is bounded in L2
(
0, T ;L2 (Ω)

)
, so from (47) we get that

{un} is bounded in L2(0, T ;D(A)). Therefore,

un ⇀ u in L2(0, T ;D(A)), (48)

as required.

Actually, in the case of regular solutions, we can get rid of the condition (11) as well by imposing the
extra assumption (12) on the constant p.

Theorem 12 Assume that (4)-(7), (12) and (17) hold. Then, for any u0 ∈ L2(Ω) there exists at least
one regular solution to (3).

Proof. Let un0 ∈ H1
0 (Ω) be a sequence such that un0 → u0 in L2(Ω). By Theorem 11 there exists a strong

solution un(·) of (3) with un(0) = un0 . Since u
n ∈ L2 (0, T ;D (A)) and

dun

dt
∈ L2

(
0, T ;L2 (Ω)

)
, from [31,

p.102] the equality
d

dt
‖un‖2H1

0
= 2(−∆un, unt )

holds true for a.a. t > 0.
Now, multiplying (3) by un and using (7) it follows that

1

2

d

dt
‖un(t)‖2L2 +m‖un‖2H1

0
+ α1‖un(t)‖pLp (49)

≤ κ|Ω|+ ‖h(t)‖L2‖un(t)‖L2 ≤ κ|Ω|+
1

2mλ1
‖h(t)‖2L2 +

m

2
‖un(t)‖2H1

0
,

so
‖un(t)‖2L2 ≤ ‖un(0)‖2L2 +K1(T ). (50)

Thus, integrating in (49) between t and t+ r we get

‖un(t+ r)‖2L2 +m

∫ t+r

t

‖un(s)‖2H1
0
ds+ 2α1

∫ t+r

t

‖un(s)‖pLpds

≤ 2κ|Ω|r +
1

mλ1

∫ t+r

t

‖h(s)‖2L2ds+ ‖un(t)‖2L2 ≤ ‖un(0)‖2L2 +K2(T ).

(51)

Also, by (9) and (17) we deduce that∫ t+r

t

(
1

2
A(‖un(s)‖2H1

0
)−

∫
Ω

F(un(s))dx

)
ds

≤
∫ t+r

t

M

2
‖un (s) ‖2H1

0
ds+ κ̃ |Ω| r + α̃2

∫ t+r

t

‖un(s)‖pLpds

≤ K3(T )
(
1 + ‖un(0)‖2L2

)
,

(52)
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for all n > 0 and t ≥ 0.
On the other hand, multiplying (3) by unt we have

1

2
‖unt (t)‖2L2 +

d

dt

(
1

2
A(‖un(t)‖2H1

0
)−

∫
Ω

F(un(t))dx

)
≤ 1

2
‖h(t)‖2L2 , (53)

where the fact that t 7→
∫

Ω
F(un(t))dx is absolutely continuous on [0, T ] and

d

dt

∫
Ω

F(un(t))dx =

(
f (un (t)) ,

dun

dt
(t)

)
, for a.a. t > 0,

is proved by regularization using the regularity of strong solutions and (45). By the Uniform Gronwall
Lemma [34] we obtain

1

2
A(‖un(t+ r)‖2H1

0
)−
∫

Ω

F(un(t+ r))dx ≤
K3(T )(1 + ‖un(0)‖2L2)

r
+K4(T ), for all 0 ≤ t ≤ t+ r, (54)

so that by (6) and (9) we obtain that

‖un(t+ r)‖2H1
0

+ ‖un (t+ r)‖pLp ≤
K5(T )(1 + ‖un(0)‖2L2)

r
+K6(T ), (55)

for all t ≥ 0. Therefore, the sequence un(·) is bounded in L∞(r, T ;H1
0 (Ω)) for all 0 < r < T . Consequently,

a(‖un (·) ‖2
H1
0
) is bounded in [r, T ].

Integrating (53) over (r, T ), from (6), (9) and (54) it follows that

1

2

∫ T

r

‖ d
dt
un(t)‖2L2dt+

m

2
‖un(T )‖2H1

0
+ α̃1‖un(T )‖pLp − κ|Ω|

≤ 1

2

∫ T

r

‖ d
dt
un(t)‖2L2dt+

1

2
A(‖un(T )‖2H1

0
)−

∫
Ω

F(un(T ))dx

≤ 1

2

∫ T

r

‖h(t)‖2L2dt+
1

2
A(‖un(r)‖2H1

0
)−

∫
Ω

F(un(r))dx

≤ 1

2

∫ T

r

‖h(t)‖2L2dt+
K3(T )(1 + ‖un(0)‖2L2)

r
+K4(T ).

(56)

Thus
dun

dt
is bounded in L2(r, T ;L2(Ω)) for all 0 < r < T .

Taking into account (45) and (55) we infer that f (un) is bounded in L2
(
r, T ;L2 (Ω)

)
. By this way,

the equality a(‖un‖2
H1
0
)∆un = unt − f(un) + h(t) implies that un and a(‖un‖2

H1
0
)∆un are bounded in

L2(r, T ;D(A)) and L2(r, T ;L2(Ω)), respectively, for all 0 < r < T .
By the compact embedding H1

0 (Ω) ⊂ L2(Ω), we can apply the Ascoli-Arzelà theorem and obtain that,
up to a sequence, there exists a function u such that

un
∗
⇀ u in L∞(r, T ;H1

0 (Ω)),

un → u in C([r, T ], L2(Ω)),

un ⇀ u in L2(r, T ;D(A)),

dun

dt
⇀

du

dt
in L2(r, T ;L2(Ω)),

(57)

for all 0 < r < T .
On the other hand, from (51) we infer that un is bounded in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)) ∩
Lp(0, T ;Lp(Ω)), for all T > 0. Therefore, there exists a subsequence un, relabelled the same, such that

un
∗
⇀ u in L∞(0, T ;L2(Ω)),

un ⇀ u in L2(0, T ;H1
0 (Ω)),

un ⇀ u in Lp(0, T ;Lp(Ω)),

(58)
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for all T > 0. On the other hand, arguing as in the proof of Theorem 9 we obtain that

f(un) ⇀ f(u) in Lq(0, T ;Lq(Ω)),

un → u in L2(r, T ;H1
0 (Ω)),

a(‖un‖2H1
0
)→ a(‖u‖2H1

0
) in L2 (0, T ) ,

a(‖un(t)‖2H1
0
)∆un ⇀ a(‖u(t)‖2H1

0
)∆u in L2(r, T ;L2(Ω)).

Passing to the limit we obtain that u (·) is a regular solution.
Finally, by a similar argument as in the proof of Theorem 9 we establish that u (0) = u0.

Remark 13 Under the conditions of Theorem 12 any regular solution u (·) satisfies from (45) that f (u) ∈
L2
(
ε, T ;L2 (Ω)

)
for all 0 < ε < T , and then

du

dt
∈ L2

(
ε, T ;L2 (Ω)

)
as well. Hence, u ∈ C((0, T ], H1

0 (Ω))

for all T > 0.

We finish this section by giving a suffi cient condition ensuring the uniqueness of solutions.

Theorem 14 Assume the conditions of Theorem 9 and additionally that (14) is satisfied. Then there
can exists at most one regular solution to the Cauchy problem (3) for u0 ∈ L2 (Ω) .
If, moreover, M2 = 0 in condition (13), then there can be at most one weak solution.
Under the conditions of Theorem 10 and (14), there can exists at most one strong solution to the

Cauchy problem (3) for u0 ∈ H1
0 (Ω) ∩ Lp (Ω) .

Proof. Suppose that u and v are two regular solutions to (3) with the same initial condition u0 = v0.
Then by subtraction and multiplying by u− v we get by Remark 7 that

1

2

d

dt
‖u− v‖2L2 + 〈−a(‖u (t) ‖2H1

0
)∆u+ a(‖v (t) ‖2H1

0
)∆v, u− v〉 = (f(u)− f(v), u− v).

Let us consider
I = 〈−a(‖u (t) ‖2H1

0
)∆u+ a(‖v (t) ‖2H1

0
)∆v, u− v〉.

After integrating by parts, we obtain

I =

∫
Ω

(a(‖u (t) ‖2H1
0
)|∇u|2 − a(‖u (t) ‖2H1

0
)∇u∇v − a(‖v (t) ‖2H1

0
)∇u∇v + a(‖v (t) ‖2H1

0
)|∇v|2)dx

≥ a(‖u (t) ‖2H1
0
)‖u (t) ‖2H1

0
−
(
a(‖u (t) ‖2H1

0
) + a(‖v (t) ‖2H1

0
)
)
‖u (t) ‖H1

0
‖v (t) ‖H1

0
+ a(‖v (t) ‖2H1

0
)‖v (t) ‖2H1

0

=
(
a(‖u (t) ‖2H1

0
)‖u (t) ‖H1

0
− a(‖v (t) ‖2H1

0
)‖v (t) ‖H1

0

)(
‖u (t) ‖H1

0
− ‖v (t) ‖H1

0

)
≥ 0, (59)

where we have used (14) in the last inequality.
Hence, from (59) and f ′ (s) ≤ η, we infer

1

2

d

dt
‖u− v‖2L2 ≤

∫
Ω

(f(u)− f(v)) (u− v)dx =

∫
Ω

(∫ u

v

f ′(s)ds

)
(u− v)dx ≤ η‖u− v‖2L2 .

By Remark 7 it is correct to apply the Gronwall lemma over an arbitrary interval (ε, t), so

‖u(t)− v(t)‖2L2 ≤ ‖u (ε)− v (ε) ‖2L2 e2η(t−ε), t ≥ 0.

Since Lemma 6 implies that u, v ∈ C([0, T ], L2 (Ω)), we pass to the limit as ε→ 0 to get

‖u(t)− v(t)‖2L2 ≤ ‖u (0)− v (0) ‖2L2 e2ηt, t ≥ 0.

Hence, the uniqueness follows.
If M2 = 0 in (13), then by (18) the above argument is valid for weak solutions as well.
The proof of the last statement is the same with the only difference that condition (13) is not needed.
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3 Existence and structure of attractors

In this section we will prove the existence of global attractors for the semiflows generated by regular and
strong solutions under different assumptions in the autonomous case, that is, when the function h does
depend on t. We will also establish that the attractor is equal to the unstable set of the stationary points
or to the stable one when we only consider solutions in the set of bounded complete trajectories.
We consider the following condition instead of (4):

h ∈ L2 (Ω) . (60)

Throughout this section, for a metric space X with metric ρ we will denote by distX (C,D) the
Hausdorff semidistance from C to D, that is, distX(C,D) = supc∈C infd∈D ρ (c, d) .
It is important to observe that in the theorems of existence of solutions of the previous section we

have used either assumption (11) or (12). Now, when we use condition (11) in some cases it is necessary
to add a restriction on the constant p given below in (83).

We summarize the main results of this section:

• Conditions (5)-(7), (11), (17), (14) and (60) imply that the regular solutions generate a semigroup
in the phase space L2 (Ω) possessing a global attractor, which is compact in H1

0 (Ω) and bounded in
Lp (Ω) (Theorem 17 and Lemma 39). If, in addition, either h ∈ L∞ (Ω) or p ≤ 2n/(n−2) for n ≥ 3,
then it is characterized by the unstable set of the stationary points (Proposition 40). Moreover,
condition (15) implies that the attractor is bounded in H2 (Ω) (Proposition 19).

• Conditions (5)-(7), (17), (60) and either (12) or (11), (83) imply that the regular solutions generate
a (possibly) multivalued semiflow in the phase space L2 (Ω) possessing a global attractor, which is
compact in H1

0 (Ω) and Lp (Ω) and is equal to the unstable set of the stationary points (Theorems
33, 37).

• Conditions (5)-(7), (17), (60) and either (12) or (11), (83) imply that the strong solutions generate
a (possibly) multivalued semiflow in the phase space H1

0 (Ω) possessing a global attractor, which is
compact in H1

0 (Ω) and Lp (Ω) and is equal to the unstable set of the stationary points (Theorems
45, 48).

• Conditions (5)-(7), (11), (17), (14), (60) and (83) imply that the strong solutions generate a semi-
group in the phase space H1

0 (Ω) possessing a global attractor, which is compact in H1
0 (Ω) and

Lp (Ω) and is equal to the unstable set of the stationary points (Theorems 50, 53). Moreover,
condition (15) implies that the attractor is bounded in H2 (Ω) (Proposition 54).

• Conditions (5)-(7), (11), (17), (14) and (60) imply that the strong solutions generate a semigroup
in the phase space H1

0 (Ω) ∩ Lp (Ω) (endowed with the induced topology of H1
0 (Ω)) possessing a

global attractor, which is compact in H1
0 (Ω) and bounded in Lp (Ω) (Theorem 57). If, in addition,

either h ∈ L∞ (Ω) or p ≤ 2n/(n − 2) for n ≥ 3, then it is characterized by the unstable set of the
stationary points (Theorem 60). Moreover, condition (15) implies that the attractor is bounded in
H2 (Ω) (Proposition 61).

• In all the above situations h ∈ L∞ (Ω) implies that the global attractor is bounded in L∞ (Ω)
(Theorems 18, 36, 47, 59).

3.1 Regular solutions

We split this part into three subsections.

3.1.1 The case of uniqueness

If we assume conditions (5)-(7), (11), (14), (60), then by Theorems 9 and 14 we can define the following
continuous semigroup Tr : R+ × L2(Ω)→ L2(Ω) :

Tr(t, u0) = u(t), (61)
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where u (·) is the unique regular solution to (3). We denote by R the set of fixed points of Tr, that is,
the points z such that Tr(t, z) = z for any t ≥ 0.
We also observe that if we assume (17), then using the calculations in (52)-(55) for the Galerkin

approximations of any regular solution u (·) one can obtain that u ∈ L∞ (ε, T ;Lp (Ω)) , for all 0 < ε < T ,
and then u ∈ Cw((0,+∞), Lp (Ω)).
Our first purpose is to obtain a global attractor. We recall that the set A is a global compact attractor

for Tr if it is compact, invariant (which means Tr(t,A) = A for any t ≥ 0) and it attracts any bounded
set B, that is,

distL2 (Tr(t, B) ,A)→ 0 as t→ +∞.

Proposition 15 Let (5)-(7), (11), (13), (14) and (60) hold. Then the semigroup Tr has a bounded
absorbing set in L2; that is, there exists a constant K such that for any R > 0 there is a time t0 = t0(R)
such that

‖u(t)‖L2 ≤ K for all t ≥ t0, (62)

where ‖u0‖L2 ≤ R, u (t) = Tr(t, u0). Moreover, there is a constant L such that∫ t+1

t

‖u(s)‖2H1
0
ds ≤ L for all t ≥ t0. (63)

Proof. Multiplying equation (3) by u and using (7) and Remark 7 we have

1

2

d

dt
‖u(t)‖2L2 +

m

2
‖u(t)‖2H1

0
+ α1‖u(t)‖p

LP
≤ κ|Ω|+ 1

2λ1m
‖h‖2L2 =

κ1

2
. (64)

The Gronwall lemma and the inequality ‖u(t)‖2
H1
0
≥ λ1‖u(t)‖2L2 give

‖u(t)‖2L2 ≤ ‖u(ε)‖2L2e−λ1m(t−ε) +
κ1

λ1m
, for any ε > 0.

As u ∈ C([0, T ], L2 (Ω) by Lemma 6, passing to the limit we have

‖u(t)‖2L2 ≤ ‖u(0)‖2L2e−λ1mt +
κ1

λ1m
. (65)

Hence, taking

t ≥ t0 ≡
1

λ1m
ln

(
λ1mR

2

κ1

)
we get (62) for K = 2κ1

λ1m
. On the other hand, integrating (64) between t and t + 1 and using (65) we

obtain

m

∫ t+1

t

‖u(s)‖2H1
0
ds ≤ ‖u(t)‖2L2 + κ1

and using the previous bound we get∫ t+1

t

‖u(s)‖2H1
0
ds ≤ κ1

m
+

2κ1

λ1m2
, for all t ≥ t0,

so that (63) follows.

Proposition 16 Let (5)-(7), (11), (17), (14) and (60) hold. Then there exists a bounded absorbing set
in H1

0 (Ω) ∩ Lp (Ω); that is, there is a constant M such that for any R > 0 there is a time t1 = t1(R)
such that

‖u(t)‖H1
0

+ ‖u (t)‖Lp ≤M for all t ≥ t1,

where ‖u0‖L2 ≤ R, u (t) = Tr(t, u0).
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Proof. The following calculations are formal but can be justified by the Galerkin approximations.
Arguing as in (52)-(55) we obtain the existence of a constant C such that

‖Tr(1, u (0))‖2H1
0

+ ‖Tr (1, u (0))‖pLp ≤ C(1 + ‖u(0)‖2L2).

Hence, the semigroup property Tr(t+ 1, u0) = Tr(1, Tr(t, u0)) and (62) imply that

‖Tr(t+ 1, u0)‖2H1
0

+ ‖Tr (t+ 1, u0)‖pLp ≤ C(1 +K2) ∀t ≥ t0 (R) ,

if ‖u0‖L2 ≤ R, which proves the statement.

Theorem 17 Let (5)-(7), (11), (17), (14) and (60). Then the equation (3) has a connected global
compact attractor Ar, which is bounded in H1

0 (Ω) ∩ Lp (Ω).

Proof. Since a bounded set in H1
0 (Ω) is relatively compact in L2(Ω) which is a connected space, the

result follows from Theorem 10.5 in [30] and Proposition 16.

We will also obtain the boundedness of the attractor in the spaces L∞ (Ω) and H2 (Ω).
First, we recall that a function φ : R → L2 (Ω) is a complete trajectory of the semigroup Tr if

φ (t) = Tr(t− s, φ (s)) for any t ≥ s. φ is bounded if the set ∪s∈Rφ (s) is bounded. It is well known [24]
that the global attractor is characterized by

Ar = {φ (0) : φ is a bounded complete trajectory}. (66)

Theorem 18 Let (5)-(7), (11), (17), (14) and (60) hold. Then the global attractor Ar is bounded in
L∞(Ω), provided that h ∈ L∞(Ω).

Proof. We define v+ = max{v, 0}, v− = −max{−v, 0}.We multiply equation (3) by (u−M)+ for some
appropriate constant M and integrate over Ω to obtain

1

2

d

dt

∫
Ω

|(u−M)+|2dx+ a(‖u(t)‖2H1
0
)

∫
Ω

|∇(u−M)+|2dx =

∫
Ω

(f(u(t)) + h)(u−M)+dx,

where we have used the equality 1
2

d

dt

∫
Ω
|(u−M)+|2dx = (ut, (u−M)+) , which is proved by regulariza-

tion.
Since h ∈ L∞(Ω), by (7) we deduce that

(f(u) + h)u ≤ κ̃− α̃|u|p.

It follows that

f(u) + h ≤ 0 when u ≥ (
κ̃

α̃
)1/p = M.

Therefore, we have
(f(u) + h)(u−M)+ ≤ 0.

Thus, by (6) and the the Poincaré inequality, we deduce that

d

dt

∫
Ω

|(u−M)+|2dx ≤ −2mλ1

∫
Ω

|(u−M)+|2dx.

Using the Gronwall inequality, we have∫
Ω

|(u(t)−M)+|2dx ≤ e−2mλ(t−τ)

∫
Ω

|(u (τ)−M)+|2dx.

For any y ∈ Ar there is by (66) a bounded complete trajectory φ such that φ (0) = y. Then taking t = 0
and τ → −∞ in the last inequality, we obtain y (x) = φ(0, x) ≤M, for a.a. x ∈ Ω. The same arguments
can be applied to (u−M)−, which shows that

‖y‖L∞ ≤M, ∀y ∈ Ar.

If we assume (15), then it is possible to show that the global attractor is more regular.
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Proposition 19 Let (5)-(7), (11), (17) and (60) hold. If, additionally, (15) is satisfied, then there exists
an absorbing set in H2 (Ω) and the global attractor is bounded in H2(Ω).

Proof. We will prove the existence of an absorbing set in H2 (Ω). The boundedness of the global
attractor in this space follows then immediately. We proceed formally, but the estimates can be justified
via Galerkin approximations.
Let u(t) = Tr(t, u0) with ‖u0‖L2 ≤ R. First, we differentiate the equation with respect to t

utt − a′(‖u‖2H1
0
)
d

dt
‖u‖2H1

0
∆u− a(‖u‖2H1

0
)∆ut = f ′(u)ut.

Multiplying by ut we get

1

2

d

dt
‖ut‖2L2 +

1

2
a′(‖u‖2H1

0
)(
d

dt
‖u‖2H1

0
)2 + a(‖u‖2H1

0
)‖ut‖2H1

0
=

∫
Ω

f ′(u)(ut)
2dx. (67)

By (6), a′ (s) ≥ 0 and f ′ (s) ≤ η we obtain

1

2

d

dt
‖ut‖2L2 +m‖ut‖2H1

0
≤ η‖ut‖2L2 . (68)

Second, multiplying (3) by ut and reordering terms, we obtain

d

dt

(
a(‖u‖2

H1
0
)

2
‖u‖2H1

0
−
∫

Ω

F(u)dx−
∫

Ω

h(x)udx

)
+ ‖ut‖2L2 =

a′(‖u‖2
H1
0
)

2
‖u‖2H1

0

d

dt
‖u‖2H1

0
. (69)

Proposition 16 implies that
a′(‖z‖2H1

0
) ≤ γ := sup|s|≤Ma

′(s2)

if z belongs to the absorbing set in H1
0 (Ω). On the other hand, multiplying the equation by −∆u and

using Proposition 16, we obtain

d

dt
‖u‖2H1

0
+m‖∆u(t)‖2L2 ≤ 2η‖u(t)‖2H1

0
+

1

m
‖h‖2L2 ≤ K1 ∀t ≥ t1(R).

Hence, by (69) and Proposition 16, it follows

d

dt

(
a(‖u‖2

H1
0
)

2
‖u‖2H1

0
−
∫

Ω

F(u)dx−
∫

Ω

h(x)udx

)
+ ‖ut‖2L2 ≤

γ

2
K1M

2, ∀t ≥ t1(R). (70)

Multiplying both sides of the inequality f ′(s) ≤ η by s and integrating between 0 and s, we obtain

sf(s) ≤ F(s) +
s2

2
η, ∀s ∈ R. (71)

Moreover, integrating f ′(s) ≤ η twice between 0 and s, we infer

F(s) ≤ η

2
s2 + Cs, ∀s ∈ R. (72)

Now, we multiply (3) by u and integrate between t and t+ 1 to obtain

1

2
‖u(t+ 1)‖2L2 +

∫ t+1

t

(
a(‖u‖2H1

0
)‖u(s)‖2H1

0
−
∫

Ω

f(u)udx−
∫

Ω

h(x)udx

)
ds =

1

2
‖u(t)‖2L2 . (73)

From (71), (73) and Proposition 15 it follows∫ t+1

t

(
a(‖u‖2

H1
0
)

2
‖u‖2H1

0
−
∫

Ω

F(u)dx−
∫

Ω

h(x)udx

)
ds ≤ 1

2
‖u(t)‖2L2 +

η

2

∫ t+1

t

‖u‖2L2ds ≤ L̃ ∀t ≥ t0
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The last inequality allows us to apply the Uniform Gronwall Lemma to (70) in order to obtain

a(‖u‖2
H1
0
)

2
‖u‖2H1

0
−
∫

Ω

F(u)dx−
∫

Ω

h(x)udx ≤ L̃+
γ

2
K1M

2 ∀t ≥ t1 + 1. (74)

Using (6) and (72) we get

a(‖u‖2
H1
0
)

2
‖u‖2H1

0
−
∫

Ω

F(u)dx−
∫

Ω

h(x)udx ≥ −η
2
‖u‖2L2 − C̃‖u‖L2 . (75)

Now, integrating (70) from t to t+ 1, using (74), (75), by Proposition 15 we have∫ t+1

t

‖us‖2L2ds ≤ L̃+ γK1M
2 +

η

2
K2 + C̃K = ρ1, ∀t ≥ t1 + 1. (76)

Hence, the last equation allow us to apply to (68) the Uniform Gronwall Lemma [34] to obtain

‖du
dt

(t)‖2L2 ≤ ρ2, ∀t ≥ t1 + 2. (77)

Finally, we multiply (3) by −∆u and use (6) to obtain

m

2
‖∆u‖2L2 ≤ η‖u‖2H1

0
+

1

m
‖h‖2L2 +

1

m
‖ut‖2L2 .

Thus, by Proposition 16 and (77), we deduce that

‖u(t)‖2H2 ≤ ρ3 ∀t ≥ t1 + 2.

3.1.2 Abstract theory of attractors for multivalued semiflows

Prior to studying the case of non-uniqueness, we recall some well-known results concerning the structure
of attractors for multivalued semiflows.
Consider a metric space (X, d) and a family of functions R ⊂ C(R+;X). Denote by P (X) the class

of nonempty subsets of X. Then we define the multivalued map G : R+ × X → P (X) associated with
the family R as follows

G(t, u0) = {u(t) : u(·) ∈ R, u(0) = u0}. (78)

In this abstract setting, the multivalued map G is expected to satisfy some properties that fit in the
framework of multivalued dynamical systems. The first concept is given now.

Definition 20 A multivalued map G : R+ × X → P (X) is a multivalued semiflow (or m-semiflow) if
G(0, x) = x for all x ∈ X and G(t+ s, x) ⊂ G(t, G(s, x)) for all t, s ≥ 0 and x ∈ X.
If the above is not only an inclusion, but an equality, it is said that the m-semiflow is strict.

Once a multivalued semiflow is defined, we recall the following concepts.

Definition 21 A map γ : R→ X is called a complete trajectory of R (resp. of G) if γ(·+ h) |[0,∞)∈ R
for all h ∈ R (resp. if γ(t+ s) ∈ G(t, γ(s)) for all s ∈ R and t ≥ 0).
A point z ∈ X is a fixed point of R if ϕ(·) ≡ z ∈ R. The set of all fixed points will be denoted by RR.
A point z ∈ X is a stationary point of G if z ∈ G(t, z) for all t ≥ 0.

Definition 22 Given an m-semiflow G a set B ⊂ X is said to be negatively (positively) invariant if
B ⊂ G(t, B) (G(t, B) ⊂ B) for all t ≥ 0, and strictly invariant (or, simply, invariant) if it is both
negatively and positively invariant.
The set B is said to be weakly invariant if for any x ∈ B there exists a complete trajectory γ of R

contained in B such that γ(0) = x. We observe that weak invariance implies negative invariance.
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Definition 23 A set A ⊂ X is called a global attractor for the m-semiflow G if it is negatively invariant
and it attracts all bounded subsets, i.e., distX(G(t, B),A)→ 0 as t→ +∞.

Remark 24 When A is compact, it is the minimal closed attracting set [28, Remark 5].

In order to obtain a detailed characterization of the internal structure of a global attractor, we
introduce an axiomatic set of properties on the set R.

(K1) For any x ∈ X there exists at least one element ϕ ∈ R such that ϕ(0) = x.

(K2) ϕτ (·) := ϕ(·+ τ) ∈ R for any τ ≥ 0 and ϕ ∈ R (translation property).

(K3) Let ϕ1, ϕ2 ∈ R be such that ϕ2(0) = ϕ1(s) for some s > 0. Then, the function ϕ defined by

ϕ(t) =

{
ϕ1(t) 0 ≤ t ≤ s,
ϕ2(t− s) s ≤ t,

belongs to R (concatenation property).

(K4) For any sequence {ϕn} ⊂ R such that ϕn(0) → x0 in X, there exist a subsequence {ϕnk} and
ϕ ∈ R such that ϕnk(t)→ ϕ(t) for all t ≥ 0.

Remark 25 If in assumption (K1), for every x ∈ X, there exists a unique ϕ ∈ R such that ϕ(0) = x,
then the set {ϕ ∈ R : ϕ(0) = x} consists of a single trajectory ϕ, and the equality G(t, x) = ϕ(t) defines
a classical semigroup G : R+ ×X → X.

It is immediate to observe [11, Proposition 2] or [23, Lemma 9] that R fulfilling (K1) and (K2) gives
rise to an m-semiflow G through (78), and if besides (K3) holds, then this m-semiflow is strict. In such
a case, a global bounded attractor, supposing that it exists, is strictly invariant [28, Remark 8].
Several properties concerning fixed points, complete trajectories and global attractors are summarized

in the following results [21].

Lemma 26 Let (K1)-(K2) be satisfied. Then every fixed point (resp. complete trajectory) of R is also a
fixed point (resp. complete trajectory) of G.
If R fulfills (K1)-(K4), then the fixed points of R and G coincide. Besides, a map γ : R → X is a

complete trajectory of R if and only if it is continuous and a complete trajectory of G.

The standard well-known result in the single-valued case for describing the attractor as the union of
bounded complete trajectories (see [24]) reads in the multivalued case as follows.

Theorem 27 Consider R satisfying (K1) and (K2) and either (K3) or (K4). Assume that G possesses
a compact global attractor A. Then

A = {γ(0) : γ ∈ K} = ∪t∈R{γ(t) : γ ∈ K}, (79)

where K denotes the set of all bounded complete trajectories in R. Hence, A is weakly invariant.

We finish this section by stating a general result about the existence of attractors. We recall that the
map t 7→ G(t, x) is upper semicontinuous if for any x ∈ X and any neighborhood O(G(t, x)) in X there
exists δ > 0 such that if d(y, x) < δ, then G(t, y) ⊂ O.

Theorem 28 [28, Theorem 4 and Remark 8] Let the map t 7→ G(t, x) be upper semicontinuous with
closed values. If there exists a compact attracting set K, that is,

distX(G(t, B),K)→ 0, as t→ +∞,

for any bounded set B, then G possesses a global compact attractor A, which is the minimal closed
attracting set. If, moreover, G is strict, then A is invariant.

We observe that, although in the papers [28], [21] the space X is assumed to be complete, the results
are true in a non-complete space.
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3.1.3 The case of non-uniqueness

If we do not assume the additional assumptions on the function a (·) of Section 3.1.1 ensuring uniqueness
of the Cauchy problem, we have to define a multivalued semiflow.
We have two possibilities: either to consider the conditions of Theorem 9 with an extra growth as-

sumption or to use the conditions of Theorem 12.
If we assume conditions (5)-(7), (12), (17) and (60), then by Theorem 12 for any u0 ∈ L2 (Ω) there

exists at least one regular solution and (45) implies that f(u) ∈ L2(ε, T ;L2(Ω)) for any regular solution,

so
du

dt
∈ L2(ε, T ;L2(Ω)) as well. In this case, as H1

0 (Ω) ⊂ Lp (Ω), we have that u ∈ C((0,+∞), H1
0 (Ω)) ⊂

C ((0,+∞) , Lp (Ω)) .
If we assume conditions (5)-(7), (11), (13) and (60) as well, then we known by Theorem 9 that for

any u0 ∈ L2 (Ω) there exists at least one regular solution.
In order to obtain the necessary estimates leading to the existence of a global attractor, we need to

ensure that
du

dt
∈ L2(ε, T ;L2(Ω)), for all 0 < ε < T, (80)

holds, as by [31, p.102] we obtain that

d

dt
‖u‖2H1

0
= 2(−∆u, ut) for a.a. t. (81)

and u ∈ C((0,+∞), H1
0 (Ω)).

We note that the set of regular solutions of that kind is non-empty if we assume (17), as using
inequalities (52)-(56) in the proof of Theorem 9 we prove that the regular solution satisfies (80).

We also observe that we can force all the regular solutions to satisfy
du

dt
∈ L2(ε, T ;L2(Ω)) with

an additional assumption on the constant p, which is weaker than (12). This is achieved by obtaining
that f(u) ∈ L2(ε, T ;L2(Ω)), which can be done by using an interpolation inequality. Indeed, for u ∈
L∞(ε, T ;H1

0 (Ω)) ∩ L2(ε, T ;D(A)) we have the interpolation inequality

‖u‖2(γ+1)

L2(γ+1)(ε,T ;L2(γ+1)(Ω))
≤ ‖u‖2γL∞(ε,T ;Lp1 (Ω))‖u‖

2
L2(ε,T ;Lp2 (Ω)), (82)

where γ = 4
n−2 , p1 = 2n

n−2 , p2 = 2n
n−4 , provided that n > 4; γ < 2, p1 = 4, p2 = 4

2−γ if n = 4; γ =

3, p1 = 6, p2 = +∞ if n = 3; and γ ≥ 0 is arbitrary for n = 1, 2.We have used the embeddings H1
0 (Ω) ⊂

Lp1 (Ω) , H2 (Ω) ⊂ Lp2 (Ω) and [35, Lemma II.4.1, p. 72]. Thus, (8) implies that f(u) ∈ L2(ε, T ;L2(Ω))
if

p ≤ γ + 2 (83)

and also that

‖f(u)‖2L2(ε,T ;L2(Ω)) =

∫ T

ε

∫
Ω

|f(u(x, t))|2dxdt ≤ C1 + C2

∫ T

ε

∫
Ω

|u(x, t)|2(γ+1)dxdt. (84)

Condition (83) also implies H1
0 (Ω) ⊂ Lp (Ω), so u ∈ C((0,+∞), Lp(Ω)).

Another necessary property to obtain estimates is the fact that t 7→
∫

Ω
F(u(t))dx is absolutely con-

tinuous on [ε, T ] for all 0 < ε < T and

d

dt

∫
Ω

F(u(t))dx =

(
f (u (t)) ,

du

dt
(t)

)
, for a.a. t > 0. (85)

This can be proved by regularization in both situations by using the regularity of regular solutions and
either (45) or (84).
Therefore, under either the conditions of Theorem 9 with the extra assumption (83) or the conditions

of Theorem 12 we define the set

R = K+
r := {u(·) : u is a regular solution of (3)}.
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We define the (possibly multivalued) map Gr : R+ × L2(Ω)→ P (L2(Ω)) by

Gr(t, u0) = {u(t) : u ∈ K+
r and u(0) = u0}.

With respect to the axiomatic properties (K1) − (K4) given above, we observe that obviously (K1) is
true, and (K2) can be proved easily using equality (19). Therefore, Gr is a multivalued semiflow by the
results of the previous section. In this case we are not able to prove (K3), so Gr could be non-strict.
Further we will prove that (K4) holds true.

Lemma 29 Let us assume (5)-(7), (17) and (60). Additionally, assume one of the following assumptions:

1. (11) and (83) hold;

2. (12) is true.

Given a sequence {un} ⊂ K+
r such that un(0) → u0 weakly in L2(Ω), there exists a subsequence of

{un} (relabeled the same) and u ∈ K+
r , satisfying u(0) = u0, such that

un(t)→ u(t) strongly in H1
0 (Ω) ∀t > 0.

Proof. We take an arbitrary T > 0. Arguing as in the proof of Theorem 9 we obtain the existence of a
subsequence of un such that

{un} is bounded in L∞(0, T ;L2(Ω)),

{un} is bounded in Lp(0, T ;Lp(Ω)),

{f(un)} is bounded in Lq(0, T ;Lq(Ω)).

(86)

The only difference is that we obtain inequality (26) in an arbitrary interval [ε, T ] and then pass to the
limit as ε→ 0 (see the proof of Proposition 15).

Since
dun

dt
∈ L2(ε, T ;L2(Ω)), for any ε > 0, we have that u ∈ C((0, T ], H1

0 (Ω)) and we know that

(81), (85) are true. Therefore, arguing as in the proofs of Theorems 9 and 12 and using (84) and (45)
there exists u ∈ L∞(ε, T ;L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)) and a subsequence {un}, relabelled the same, such
that

un
∗
⇀ u in L∞(0, T ;L2(Ω))

un
∗
⇀ u in L∞(ε, T ;H1

0 (Ω))

un ⇀ u in L2(0, T ;H1
0 (Ω))

un ⇀ u in Lp(0, T ;Lp(Ω))

un ⇀ u in L2(ε, T ;D(A)),

dun
dt

⇀
du

dt
in L2(ε, T ;L2(Ω))

f(un) ⇀ f(u) in Lq(0, T ;Lq(Ω)),

f(un) ⇀ f(u) in L2(ε, T ;L2 (Ω)) ,

a(‖un‖2H1
0
)∆un ⇀ a(‖u‖2H1

0
)∆u in L2(ε, T ;L2(Ω)).

(87)

In view of (87), the Aubin-Lions Compactness Lemma gives

un → u in L2(ε, T ;H1
0 (Ω)). (88)

Since the sequence {un} is equicontinuous in L2(Ω) on [ε, T ] and bounded in C([ε, T ], H1
0 (Ω)), by the

compact embedding H1
0 (Ω) ⊂ L2(Ω) and the Ascoli-Arzelà theorem, a subsequence fulfills

un → u in C([ε, T ], L2(Ω)),

un(t) ⇀ u(t) in H1
0 (Ω) ∀t ∈ [ε, T ].
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By a similar argument as in the proof of Theorem 9 we establish that u ∈ K+
r , u (0) = u0.

Finally, we shall prove that un(t)→ u(t) in H1
0 (Ω) for all t ∈ [ε, T ].

Multiplying (3) by unt and using (36), (81), and (85) we obtain

1

2

∥∥∥∥dundt
∥∥∥∥2

L2
+
d

dt

(
1

2
A(‖un(t)‖2H1

0
−
∫

Ω

F(un(t))dx

)
≤ 1

2
‖h‖2L2 = D.

Thus,

1

2
A(‖un(t)‖2H1

0
)−

∫
Ω

F(un(t))dx ≤ 1

2
A(‖un(s)‖2H1

0
)−

∫
Ω

F(un(s))dx+D(t− s), t ≥ s ≥ ε > 0.

The same inequality is valid for the limit function u(·). We observe that the map y 7−→
∫

Ω
F(y (x))dx is

continuous in the topology ofH1
0 (Ω), which follows easily fromH1

0 (Ω) ⊂ Lp (Ω) and (10) using Lebesgue’s
theorem. Hence, the functions Jn(t) = 1

2A(‖un(t)‖2
H1
0
) −

∫
Ω
F(un(t))dx − Dt, J(t) = 1

2A(‖u(t)‖2
H1
0
) −∫

Ω
F(u(t))dx − Dt are continuous and non-increasing in [ε, T ]. Moreover, from (88) we deduce that

Jn(t)→ J(t) for a.e. t ∈ (ε, T ). Take ε < tm < T such that tm → T and Jn(tm)→ J(tm) for all m. Then

Jn(T )− J(T ) ≤ Jn(tm)− J(T ) ≤ |Jn(tm)− J(tm)|+ |J(tm)− J(T )|.

For any δ > 0 there exist m(δ) and N(m(δ)) such that Jn(T )−J(T ) ≤ δ if n ≥ N. Then lim supJn(T ) ≤
J(T ), so lim sup ‖un(T )‖2

H1
0
≤ ‖u(T )‖2

H1
0
(see the explanation below). As un(T )→ u(T ) weakly in H1

0 (Ω)

implies lim inf ‖un(T )‖2
H1
0
≥ ‖u(T )‖2

H1
0
, we obtain

‖un(T )‖2H1
0
→ ‖u(T )‖2H1

0
,

so that un(T )→ u(T ) strongly in H1
0 (Ω).

In order to finish the proof rigorously, we have to justify that lim supJn(T ) ≤ J(T ) implies the
inequality lim sup ‖un(T )‖2

H1
0
≤ ‖u(T )‖2

H1
0
. First, we observe that by (10) we have∣∣∣∣∫

Ω

F(un (T, x))dx

∣∣∣∣ ≤ C ∫
Ω

(1 + |un (T, x)|p) dx,

so the boundedness of un (T ) in Lp (Ω) implies that−
∫

Ω
F(un (T, x))dx <∞. Also, (9) gives−F(un (T, x)) ≥

−κ̃, so by Fatou’s lemma we obtain

lim inf

(
−
∫

Ω

F(un (T, x))dx

)
≥
∫

Ω

lim inf (−F(un (T, x))) dx

= −
∫

Ω

F(u (T, x))dx,

where we have used that F(un (T, x) → F(u (T, x)) for a.a. x ∈ Ω. By contradiction let us assume that
lim sup ‖un (T )‖H1

0
> ‖u (T )‖. Then using the continuity of the function A (s) we have

lim sup

(
1

2
A
(
‖un(T )‖2H1

0

)
−
∫

Ω

F(un (T, x))dx

)
≥ lim sup

1

2

∫ ‖un(T )‖2
H1
0

0

a (s) ds+ lim inf

(
−
∫

Ω

F(un (T, x))dx

)
≥ 1

2

∫ lim sup ‖un(T )‖2
H1
0

0

a (s) ds−
∫

Ω

F(un (T, x))dx

>
1

2

∫ ‖u(T )‖2
H1
0

0

a (s) ds−
∫

Ω

F(un (T, x))dx,

which is a contradiction with lim supJn(T ) ≤ J(T ).
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Corollary 30 Assume the conditions of Lemma 29. Then the set K+
r satisfies condition (K4).

Proposition 31 Assume the conditions of Lemma 29. The multivalued semiflow Gr is upper semicon-
tinuous for all t ≥ 0, that is, for any neighborhood O(Gr(t, u0)) in L2(Ω) there exists δ > 0 such that if
‖u0 − v0‖ < δ, then Gr(t, v0) ⊂ O. Also, it has compact values.

Proof. We argue by contradiction. Assume that there exists t ≥ 0, u0 ∈ L2(Ω), a neighbourhood
O(Gr(t, u0)) and a sequence {yn} which fulfills that each yn ∈ Gr(t, un0 ), where un0 converges strongly to
u0 in L2(Ω), and yn /∈ O(Gr(t, un)) for all n ∈ N. Since yn ∈ Gr(t, un0 ) for all n, there exists un ∈ K+

r ,
un (0) = un0 , such that yn = un(t). Now, since {un0} is a convergent sequence of initial data, making
use of Lemma 29 there exists a subsequence of {un} which converges to a function u ∈ K+

r . Hence,
yn → y ∈ Gr(t, u0). This is a contradiction because yn /∈ O(Gr(t, u0)) for any n ∈ N.

Proposition 32 Assume the conditions of Lemma 29. Then there exists an absorbing set B1 for Gr,
which is compact in H1

0 (Ω) and Lp (Ω).

Proof. Reasoning as in Proposition 15, we obtain an absorbing set B0 in L2 (Ω) .

Let K > 0 be such that ‖y‖ ≤ K for all y ∈ B0. Since
du

dt
∈ L

(
ε, T ;L2 (Ω)

)
and (85) holds, we are

allowed to multiply (3) by ut, use (81) and argue as in (52)-(55) to obtain the existence of a constant C
such that

‖u (1) ‖2H1
0

+ ‖u (1)‖pLp ≤ C(1 + ‖u(0)‖2L2), (89)

for any regular solution u (·) with initial condition u (0).
For any u0 ∈ L2 (Ω) with ‖u0‖L2 ≤ R and any u ∈ K+

r such that u (0) = u0, the semiflow property
Gr(t+ 1, u0) ⊂ Gr(1, Gr(t, u0)) and Gr(t, u0) ⊂ B0, if t ≥ t0 (R) , imply that

‖u (t+ 1) ‖2H1
0

+ ‖u (t+ 1)‖pLp ≤ C(1 +K2) ∀t ≥ t0 (R) .

Then there existsM > 0 such that the closed ball BM in H1
0 (Ω) centered at 0 with radiusM is absorbing

for Gr.
By Lemma 29 the set B1 = Gr(1, BM ) is an absorbing set which is compact in H1

0 (Ω). The embedding
H1

0 (Ω) ⊂ Lp(Ω) implies that it is compact in Lp (Ω) as well.

Theorem 33 Assume the conditions of Lemma 29. Then the multivalued semiflow Gr possesses a global
compact attractor Ar. Moreover, for any set B bounded in L2(Ω) we have

distH1
0
(Gr(t, B),Ar)→ 0 as t→∞. (90)

Also Ar is compact in H1
0 (Ω) and Lp (Ω).

Proof. From Propositions 31 and 32 we deduce that the multivalued semiflow Gr is upper semicontinuous
with closed values and the existence of an absorbing which is compact in H1

0 (Ω) and Lp (Ω). Therefore,
by Theorem 28 the existence of the global attractor and its compactness in H1

0 (Ω) and Lp (Ω) follow.
The proof of (90) is analogous to that in Theorem 29 in [21].

The set of all complete trajectories of K+
r (see Definition 21) will be denoted by Fr. Moreover, we

write Kr as the set of all complete trajectories which are bounded in L2(Ω), and K1
r as the ones bounded

in H1
0 (Ω).

Lemma 34 Assume the conditions of Lemma 29. Then the sets defined above coincide, that is, Kr = K1
r.

Proof. Let γ(·) ∈ Kr. Then there is C such that ‖γ (t)‖L2 ≤ C for any t ∈ R. Let uτ (·) = γ (·+ τ)

for any τ , which is a regular solution. Since
du

dt
∈ L2(ε, T ;L2(Ω)), for any ε > 0, the equality (81) holds

true. Also, (85) is satisfied. Therefore, we can multiply the equation in (3) by ut and apply again similar
arguments as in Theorem 12 to deduce that

‖u(t+ r)‖2H1
0
≤
K1 (T ) (1 + ‖u(0)‖2L2)

r
+K2 (T ) for any 0 < r < T. (91)
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Denote Bγ = ∪t∈Rγ(t). Therefore,
Bγ ⊂ Gr(1, Bγ)

and (91) implies that Bγ is bounded in H1
0 (Ω), so γ(·) ∈ K1

r.
The other inclusion is obvious.

In view of Corollary 30 and Theorem 27, the global attractor is characterized in terms of bounded
complete trajectories:

Ar = {γ(0) : γ(·) ∈ Kr} = {γ(0) : γ(·) ∈ K1
r}

=
⋃
t∈R
{γ(t) : γ(·) ∈ Kr} =

⋃
t∈R
{γ(t) : γ(·) ∈ K1

r}. (92)

The set RK+
r
was defined in the previous section as the set of fixed points of K+

r , which means
that z ∈ RK+

r
if the function u (·) defined by u (t) = z, for all t ≥ 0, belongs to K+

r . This set can be
characterized as follows.

Lemma 35 Assume the conditions of Lemma 29. Let R be the set of z ∈ H2 (Ω) ∩H1
0 (Ω) such that

−a(‖z‖2H1
0
)∆z = f(z) + h in L2 (Ω) . (93)

Then RK+
r

= R.

Proof. If z ∈ RK+
r
, then u (t) ≡ z ∈ K+

r . Thus, u (·) satisfies (19) and du

dt
= 0 in L2

(
0, T ;L2 (Ω)

)
, so

(93) is satisfied.

Let z ∈ R. Then the map u (t) ≡ z satisfies (93) for any t ≥ 0 and
du

dt
= 0 in L2

(
0, T ;L2 (Ω)

)
, so

(19) holds true.

The following result is proved exactly as Theorem 18.

Theorem 36 Assume the conditions of Lemma 29. Then the global attractor A is bounded in L∞(Ω),
provided that h ∈ L∞(Ω).

We are now ready to obtain the characterization of the global attractor.

Theorem 37 Assume the conditions of Lemma 29. Then it holds that

Ar = Mu
r (R) = Ms

r (R),

where
Ms
r (R) = {z : ∃γ(·) ∈ Kr, γ(0) = z, dist L2(Ω)(γ(t),R)→ 0, t→ +∞}, (94)

Mu
r (R) = {z : ∃γ(·) ∈ Fr, γ(0) = z, dist L2(Ω)(γ(t),R)→ 0, t→ −∞}. (95)

Remark 38 In the definition of Mu
r (R) we can replace Fr by Kr. Also, as the global attractor A is

compact in H1
0 (Ω), in the definitions of Ms

r (R) and Mu
r (R), it is equivalent to write H1

0 (Ω) instead of
L2 (Ω) .

Proof. We consider the function E : Ar → R

E(y) =
1

2
A(‖y‖2H1

0
)−

∫
Ω

F(y (x))dx−
∫

Ω

h (x) y (x) dx, (96)

where A(r) =
∫ r

0
a(s)ds. We observe that E(y) is continuous in H1

0 (Ω). Indeed, the maps y 7→
1
2A(‖y‖2

H1
0
), y 7→

∫
Ω
h (x) y (x) dx are obviously continuous in H1

0 (Ω). On the other hand, both con-

ditions (12) and (83) imply that H1
0 (Ω) ⊂ Lp (Ω), so making use of the Lebesgue theorem the continuity

of y 7→
∫

Ω
F(y (x))dx follows as well.
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Since
du

dt
∈ L2

(
ε, T ;L2 (Ω)

)
and (85) holds for any u ∈ K+

r and 0 < ε < T , we obtain the energy

equality ∫ t

s

‖ d
dr
u(r)‖2L2dr + E(u(t)) = E(u(s)) for all t ≥ s > 0. (97)

Hence, E (u (t)) is non-increasing and, by (6) and (9), bounded from below. Thus, E(u(t)) → l, as
t→ +∞, for some l ∈ R.
Let x ∈ Ar and γ (0) = x, where γ ∈ Kr. We reason by contradiction, so let suppose that there exists

ε > 0 and a sequence γ(tn), tn → +∞, such that

dist L2(Ω)(γ(tn),R) > ε.

In view of Theorem 33, Ar is compact in H1
0 (Ω), so we can take a converging subsequence (relabeled the

same) such that γ(tn)→ y in H1
0 (Ω), where tn → +∞. Since the function E : H1

0 (Ω)→ R is continuous,
it follows that E(y) = l. We obtain a contradiction by proving that y ∈ R. In view of Lemma 29, there
exists v ∈ K+

r and a subsequence vn (·) = γ(· + tn) such that v(0) = y and vn(t) → v(t) = z in H1
0 (Ω)

for t > 0. Thus, E(vn(t)) → E(z) implies that E(z) = l. Also, v(·) satisfies the energy equality for all
0 ≤ s ≤ t, so that

l +

∫ t

0

‖vr‖2L2dr = E(z) +

∫ t

0

‖vr‖2L2dr = E(v(0)) = E(y) = l.

Therefore,
dv

dt
(t) = 0 for a.a. t, and then by Lemma 35 we have y ∈ RK+

r
= R. As a consequence,

Ar ⊂Ms
r (R). The converse inclusion follows from (92).

For the second equality we observe that for any γ ∈ Fr the energy equality (97) is satisfied for all
−∞ < s ≤ t. Let x ∈ Ar and let γ ∈ Kr = K1

r (cf. Lemma 34) be such that γ(0) = x. Since the second
term of the energy function is bounded from above by (9), E(γ(t))→ l, as t→ −∞, for some l ∈ R. We
reason as before, so let suppose that there exists ε > 0 and a sequence γ(−tn), tn →∞, such that

dist L2(Ω)(γ(−tn),R) > ε,

and we have that γ(−tn)→ y in H1
0 (Ω), E(y) = l. Moreover, for a fixed t > 0, there exists v ∈ K+

r and a
subsequence of vn(·) = γ(· − tn) (relabeled the same) such that v(0) = y and vn(t)→ v(t) = z in H1

0 (Ω).
Therefore, E(vn(t)) → E(z) implies that E(z) = l and reasoning as before we get a contradiction since
it follows that y ∈ R. Hence, Ar ⊂Mu

r (R) and the converse inclusion follows from (92).

We can improve the regularity of the global attractor of the semigroup Tr of Section 3.1.1 and obtain
its characterization

Lemma 39 Let the conditions of Theorem 17 hold. Then the global attractor Ar of the semigroup Tr is
compact in H1

0 (Ω), bounded in Lp (Ω) and the convergence takes place in the topology of H1
0 (Ω), that is,

distH1
0 (Ω)(Tr(t, B),A)→ 0, as t→ +∞,

for any set B bounded in L2 (Ω) .

Proof. The estimates of Lemma 29 can be justified for Tr via Galerkin approximations, so in this case
we do not need to impose assumption (83) in order to use (85). Thus, the proof follows the same lines as
in Proposition 32 and Theorem 33.

Proposition 40 Let the conditions of Theorem 17 hold. Also, assume one of the following conditions:

1. h ∈ L∞ (Ω) ;

2. p ≤ 2n
n−2 if n ≥ 3.
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Then the global attractor Ar can be characterized as follows:

Ar = Mu
r (R) = Ms

r (R),

where Ms
r (R), Mu

r (R) are defined in (94)-(95).

Proof. We recall that a function E : A → R is a Lyapunov functional if E is continuous (with respect to
the topology of H1

0 (Ω)), for any u0 ∈ A the map t 7→ E(Tr(t, u0)) is non-increasing and E(Tr(τ, u0)) =
E(u0), for some τ > 0, implies that u (·) is a fixed point. We estate that the function E given in (96) is
a Lyapunov functional for the semigroup Tr.
We prove that E (y) is continuous. First, the maps y 7→ 1

2A(‖y‖2
H1
0
), y 7→

∫
Ω
h (x) y (x) dx are

obviously continuous in H1
0 (Ω). Second, if h ∈ L∞ (Ω), taking into account that A is bounded in L∞ (Ω)

by Theorem 18, it follows that∣∣∣∣∫
Ω

F(y1)−F(y2)dx

∣∣∣∣ =

∣∣∣∣∣
∫

Ω

∫ y1(x)

y2(x)

f(s)dsdx

∣∣∣∣∣ ≤
∫

Ω

C1|y1 (x)− y2 (x) |dx ≤ C2‖y1 − y2‖L2 ,

so y 7→
∫

Ω
F(y (x))dx is continuous as well. In the case of the second condition, this result follows from

the embedding H1
0 (Ω) ⊂ Lp (Ω) and the Lebesgue theorem.

Multiplying the equation in (3) by ut we obtain the energy inequality∫ t

s

‖ d
dr
u(r)‖2L2dr + E(u(t)) ≤ E(u(s)), for all t ≥ s,

if u (·) is a bounded complete trajectory of Tr. This calculation is rigorous when h ∈ L∞(Ω) as the
boundedness of the solutions in L∞ (R;L∞(Ω)) implies by regularization that (85) is true. Under the
second condition, the calculations are formal but can be justified via Galerkin approximations. Hence,

E(u(t)) is non-increasing as a function of t. Also, if E(u(τ)) = E (u0) , then ‖du
dt

(t) ‖2L2 = 0 for a.a.

0 < t < τ , so u must be a fixed point.
The result follows then from [3, p.160].

3.2 Strong solutions

We split this part into two cases.

3.2.1 Attractor in the phase space H1
0 (Ω)

If we assume conditions (5)-(7), (60) and that either p satisfies (12) or that (11) is satisfied, then we know
by Theorems 10 and 11 that for any u0 ∈ H1

0 (Ω) ∩ Lp (Ω) there exists at least one strong solution u (·).
In the first case, H1

0 (Ω) ⊂ Lp (Ω) implies that H1
0 (Ω) ∩ Lp (Ω) = H1

0 (Ω). This is also true in the
second case if we assume additionally that (83) holds true. Under such assumptions we define then the
set

R = K+
s := {u(·) : u is a strong solution of (3) with u (0) ∈ H1

0 (Ω)}.

We define the (possibly multivalued) map Gs : R+ ×H1
0 (Ω)→ P (H1

0 (Ω)) by

Gs(t, u0) = {u(t) : u ∈ K+
s and u(0) = u0}.

With respect to the axiomatic properties (K1)− (K4) given above, property (K1) is obviously true, and
(K2)− (K3) can be proved easily using equality (19). Therefore, Gs is a strict multivalued semiflow by
the results of Section 3.1.2.
We shall obtain a similar result as in Lemma 29.

Lemma 41 Let assume conditions (5)-(7), (60). Additionally, assume one of the following assumptions:

1. (11) and (83) hold;
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2. (12) is true.

Given a sequence {un} ⊂ K+
s such that un(0) → u0 weakly in H1

0 (Ω), there exists a subsequence of
{un} (relabeled the same) and u ∈ K+

s , satisfying u(0) = u0, such that

un(t)→ u(t) in H1
0 (Ω), ∀t > 0.

Proof. Since
dun

dt
∈ L2

(
0, T ;L2 (Ω)

)
and (85) hold, we can use (81) and multiplying (3) by ut and

integrating between s and t we obtain∫ t

s

‖ d
dr
‖u(r)‖2L2dr + E(u(t)) = E(u(s)) for all t ≥ s ≥ 0,

where E was defined in (96). Therefore, by (6) and (9) we have that∫ t

0

‖ d
dr
u(r)‖2L2dr +

m

4
‖u(t)‖2H1

0
+ α̃1‖u(t)‖pLp ≤

1

2
A(‖u(0)‖2H1

0
) + α̃2‖u(0)‖pLp +K1 ‖u (0)‖2L2 +K2 (98)

holds for all t > 0.
In the first case, multiplying by −∆u, integrating over (0, T ) and using (98) it follows that

1

2
‖u(T )‖2H1

0
+
m

2

∫ T

0

‖∆u(s)‖2L2ds ≤ η
∫ T

0

‖u(s)‖2H1
0
ds+

1

2
‖u(0)‖2H1

0
+K3 ≤ K4 (T ) , (99)

for all T > 0. In the second case, combining (98) with (45) the boundedness of f (un) in L2
(
0, T ;L2 (Ω)

)
follows for any T > 0. Hence, the equality

a
(
‖u‖2H1

0

)
∆u =

dun

dt
− f (un)− h

and (6) imply that un is bounded in L2 (0, T ;D(A)) .

Thus, the sequence {un} is bounded in L∞(0, T ;H1
0 (Ω))∩L2(0, T ;D(A)) and

dun

dt
, f (un) are bounded

in L2(0, T ;L2(Ω)), for all T > 0. Therefore, there is u such that

un
∗
⇀ u in L∞(0, T ;H1

0 (Ω)),

un ⇀ u in L2(0, T ;D(A)),

unt ⇀ ut in L2(0, T ;L2(Ω)), .

Arguing in a similar way as in Theorem 9 we have

un → u in L2(0, T ;H1
0 (Ω)),

un(t, x)→ u(t, x) a.e. on (0, T )× Ω,

f (un) ⇀ f (u) in L2(0, T ;L2(Ω)),

a(‖un‖2H1
0
)∆un ⇀ a(‖u‖2H1

0
)∆u in L2(0, T ;L2(Ω)).

Hence, we can pass to the limit and obtain that u ∈ K+
s . Following the same lines of Theorem 10 we

check that u (0) = u0.
Moreover, arguing as in Lemma 29 we obtain

un(t)→ u(t) in H1
0 (Ω) for all t > 0.

Corollary 42 Assume the conditions of Lemma 41. Then the set K+
s satisfies condition (K4).
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Using Lemma 41 and reasoning as before the following result holds.

Proposition 43 Assume the conditions of Lemma 41. Then the map Gs (t, ·) is upper semicontinuous
for all t ≥ 0 with compact values.

Proposition 44 Assume the conditions of Lemma 41 and (17). Then there exists an absorbing set B1

for Gs, which is compact in H1
0 (Ω) and Lp (Ω).

Proof. The proof follows the same lines of that in Proposition 32 but using Lemma 41.

From these results and Theorem 28 we obtain the existence of the global attractor.

Theorem 45 Assume the conditions of Lemma 41 and (17). Then the multivalued semiflow Gs possesses
a global compact invariant attractor As, which is compact in Lp (Ω).

Lemma 46 Assume the conditions of Lemma 41 and (17). Then As = Ar, where Ar is the global
attractor in Theorem 33.

Proof. Since Gs (t, u0) ⊂ Gr (t, u0) for all u0 ∈ H1
0 (Ω), it is clear that Ar is a compact attracting set.

Hence, the minimality of the global attractor gives As ⊂ Ar.
Let z ∈ Ar. Since z = γ (0), where γ ∈ K1

r, and γ |[s,+∞) is a strong solution of (3) for any s ∈ R, we
get that z ∈ Gs(tn, γ (−tn)) for tn → +∞. Hence,

dist (z,As) ≤ dist (Gs(tn, γ (−tn)),As)→ 0 as n→∞,

so z ∈ As.

The set of all complete trajectories of K+
s (see Definition 21) will be denoted by Fs. Let Ks be the

set of all complete trajectories which are bounded in H1
0 (Ω).

In view of Theorem 27, the global attractor is characterized in terms of bounded complete trajectories:

As = {γ(0) : γ(·) ∈ Ks} =
⋃
t∈R
{γ(t) : γ(·) ∈ Ks}. (100)

In the same way as in Lemma 35 we obtain that RK+
s

= R.
Reasoning as in Theorem 18 we obtain the following result.

Theorem 47 Assume the conditions of Lemma 41 and (17). Then the global attractor As is bounded in
L∞(Ω), provided that h ∈ L∞(Ω).

Following the same procedure of Theorem 37 we can prove an analogous characterization of the global
attractor.

Theorem 48 Assume the conditions of Lemma 41 and (17).Then it holds that

As = Mu
s (R) = Ms

s (R),

where
Ms
s (R) = {z : ∃γ(·) ∈ Ks, γ(0) = z, dist H1

0 (Ω(γ(t),R)→ 0, t→ +∞}, (101)

Mu
s (R) = {z : ∃γ(·) ∈ Fs, γ(0) = z, distH1

0 (Ω(γ(t),R)→ 0, t→ −∞}. (102)

Remark 49 In the definition of Mu
s (R) we can replace Fr by Kr.

Let us consider now the particular situation when Gs is single-valued semigroup. Under the conditions
(5)-(7), (11), (60), (83), if we assume additionally that (14) is satisfied, then by Theorem 14 for any
u0 ∈ H1

0 (Ω) there exists a unique strong solution u (·). Then we can define the following semigroup
Ts : R+ ×H1

0 (Ω)→ H1
0 (Ω) :

Ts(t, u0) = u(t),

where u (·) is the unique strong solution to (3). We recall also that u ∈ C([0, T ], H1
0 (Ω)) for any T > 0.

Also, by Lemma 41 if un0 → u0 weakly in H1
0 (Ω), then Ts(t, un0 )→ T (t, u0) in H1

0 (Ω) for all t > 0.
Since Ts = Gs, by Theorems 45, 47, 48 and Lemma 46 we obtain the following results.

28



Theorem 50 Assume the conditions (5)-(7), (11), (17), (60), (83) and (14). Then the semigroup Ts
possesses a global invariant attractor As, which is compact in H1

0 (Ω) and Lp (Ω).

Lemma 51 Under the conditions of Theorem 50, As = Ar, where Ar is the attractor of Theorem 17.

Theorem 52 Assume the conditions of Theorem 50. Then the global attractor As is bounded in L∞(Ω)
provided that h ∈ L∞(Ω).

As before, we denote by R the set of fixed points of Ts. Also, the global attractor is the union of all
bounded complete trajectories

As = {φ (0) : φ is a bounded complete trajectory of Ts}.

Theorem 53 Assume the conditions of Theorem 50. Then the global attractor As can be characterized
as follows

As = Mu
s (R) = Ms

s (R),

where the sets Mu
s (R), Ms

s (R) are defined in (101)-(102).

In this case we can obtain additionally that the attractor is bounded in H2 (Ω) .

Proposition 54 Assume the conditions of Theorem 50 and also that (15) holds true. Then As is bounded
in H2 (Ω) .

Proof. The proof follows the same lines as in Proposition 19, so we omit it.

3.2.2 Attractor in the phase space H1
0 (Ω) ∩ Lp (Ω)

We consider the metric space X = H1
0 (Ω) ∩ Lp (Ω) endowed with the induced topology of the space

H1
0 (Ω).
If we assume conditions (5)-(7), (11), (14) and (60), then by Theorems 10 and 14 for any u0 ∈

H1
0 (Ω) ∩ Lp (Ω) there exists a unique strong solution u (·). Then we can define the following semigroup

Ts : R+ ×X → X :
Ts(t, u0) = u(t),

where u (·) is the unique strong solution to (3). We recall also that u ∈ C([0, T ], H1
0 (Ω))∩Cw ([0, T ], Lp (Ω))

for any T > 0.

Lemma 55 Assume conditions (5)-(7), (11), (14) and (60). If un0 → u0 weakly in H1
0 (Ω)∩Lp (Ω), then

Ts(t, u
n
0 )→ Ts(t, u0) strongly in H1

0 (Ω) and weakly in Lp (Ω) for any t > 0.

Proof. Repeating the same proof of Lemma 41 we obtain that Ts(t, un0 ) → Ts(t, u0) strongly in H1
0 (Ω)

for all t > 0. We observe that in this case the estimates are justified via Galerkin approximations, so we
do not need condition (83) in order to provide property (85).
Finally, by the Ascoli-Arzelà theorem we deduce

un → u in C([0, T ], L2(Ω))

and combining this with (98) we infer that

un (t) ⇀ u (t) in Lp (Ω) ∀t ≥ 0.

Proposition 56 Assume the conditions of Lemma 55 and (17). Then there exists an absorbing set B1

for Ts, which is compact in H1
0 (Ω) and bounded Lp (Ω).

Proof. Following the same lines of that in Proposition 32 (and justifying the estimates via Galerkin
approximations), we obtain that there exists M > 0 such that the closed ball BM in H1

0 (Ω) ∩ Lp (Ω)
centered at 0 with radius M is absorbing for Ts. By Lemma 55 the set B1 = Ts(1, BM ) is an absorbing
set which is compact in H1

0 (Ω) and bounded in Lp (Ω).
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Theorem 57 We assume the conditions of Lemma 55 and (17). Then the semigroup Ts possesses a
global attractor As, which is compact in X and bounded in Lp (Ω).

Proof. We cannot apply directly the general theory of attractors for semigroup because we do not know
whether the semigroup Ts is continuous with respect to the initial datum in X.
We state that

As = ω (B1) = {y : ∃tn → +∞, yn ∈ Ts (tn, B1) such that yn → y in X}

is a global compact attractor. The fact that set ω (B1) is non-empty, compact and the minimal closed
set attracting B1 can be proved in a standard way (see for example Theorem 10.5 in [30]). Since B1 is
absorbing, ω (B1) attracts any bounded set B. As ω (B1) ⊂ B1, As is bounded in Lp (Ω) .
We need to prove that it is invariant.
First, we prove that it is negatively invariant. Let y ∈ As and t > 0 be arbitrary. We take a

sequence yn ∈ Ts (tn, B1) such that yn → y, tn → +∞. Since Ts (tn, B1) = Ts(t, Ts(tn− t, B1)), there are
xn ∈ Ts(tn − t, B1) such that yn = Ts(t, xn). As for n large Ts(tn − t, B1) ⊂ B1, the sequence {xn} is
bounded in Lp (Ω) and relatively compact in H1

0 (Ω). Hence, up to a subsequence xn → x ∈ As weakly
in Lp (Ω) and strongly in H1

0 (Ω) . We deduce by Lemma 55 that Ts (t, xn) → Ts(t, x) weakly in Lp (Ω)
and strongly in H1

0 (Ω). Thus, y = Ts(t, x) ⊂ Ts (t,As) .
Second, we prove that it is positively invariant. As As = Ts(τ,As) for any τ ≥ 0, this follows from

distX (Ts (t,As) ,As) = distX (Ts (t, Ts(τ,As)) ,As) = distX (Ts (t+ τ,As) ,As) →
τ→+∞

0.

Lemma 58 Under the conditions of Theorem 57, As = Ar, where Ar is the attractor of Theorem 17.

Proof. Since Tr (t, u0) = Ts (t, u0) for any u0 ∈ X, we have

distL2 (As,Ar) = distL2 (Ts(t,As),Ar) = distL2 (Tr(t,As),Ar) →
t→+∞

0,

so As ⊂ Ar. In the same way,

distX (Ar,As) = distX (Tr(t,Ar),As) = distX (Ts(t,Ar),As) →
t→+∞

0,

and then Ar ⊂ As.

The following two theorems are proved in the same way as Theorem 18 and Proposition 40

Theorem 59 Assume the conditions of Theorem 57. Then the global attractor As is bounded in L∞(Ω)
provided that h ∈ L∞(Ω).

As before, we denote by R the set of fixed points of Ts. Also, the global attractor is the union of all
bounded complete trajectories

As = {φ (0) : φ is a bounded complete trajectory of Ts}.

Theorem 60 We assume the conditions of Theorem 57 and one of the following assumptions:

1. h ∈ L∞ (Ω);

2. p ≤ 2n
n−2 if n ≥ 3.

Then the global attractor As can be characterized as follows

As = Mu
s (R) = Ms

s (R),

where the sets Mu
s (R), Ms

s (R) are defined in (101)-(102).

30



We obtain additionally that the attractor is bounded in H2 (Ω) .

Proposition 61 Assume the conditions of Theorem 57 and also that (15) is satisfied. Then As is
bounded in H2 (Ω) .

Proof. The proof follows the same lines as in Proposition 19, so we omit it.
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