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Abstract

In this paper we study a nonlocal reaction-diffusion equation in which the diffusion depends on
the gradient of the solution.

Firstly, we prove the existence and uniqueness of regular and strong solutions. Secondly, we obtain
the existence of global attractors in both situations under rather weak assumptions by defining a
multivalued semiflow (which is a semigroup in the particular situation when uniqueness of the Cauchy
problem is satisfied). Thirdly, we characterize the attractor either as the unstable manifold of the
set of stationary points or as the stable one when we consider solutions only in the set of bounded
complete trajectories.
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1 Introduction

In real applications there might exist several nonlocal effects that influence the evolution of a system. For
instance, usually we do not have enough information about the systems under study and its features at
every point. In reality, the measurements are not made pointwise but through some local average. This is
just one possible reason of introducing nonlocal terms in models. Actually, during the last decades many
mathematicians have been studying nonlocal problems motivated by its various applications in physics,
biology or population dynamics [13, 14, 15, 16, 17, 27].

For instance, let consider the problem of finding a function u(t, z) such that

up — af [ u(t, z)dz)Au = g(t,u), in Q x (0,00),
u=0 on N x (0,00), (1)
u(0) =up in Q.

Here (2 is a bounded open subset in R™, n > 1, with smooth boundary and a is some function from R
to (0,+00). In such equation u could describe the density of a population subject to spreading. The
diffusion coefficient a is then supposed to depend on the entire population in the domain rather than on
the local density.

A wide literature with significant results about (1) have been developed during the last few decades
(see for example [14, 17, 27]). However, it is possible to distinguish two basic cases of the following more
general equation

ug — a(u)Au = g(t,u), t>0, z€Q,
u =0, on 9Q x (0,00),
u(0,z) =up(z) z €.



Some authors consider a depending on a linear functional I(u), i.e.,

with

I(u) = /Q B(@)u(w, t)dz,

where ®(z) is a given function in L?(2). For g(t,u) = f(t) the existence and uniqueness of solutions
and their asymptotic behavior are studied for example in [15, 16, 18, 32]. For g(t,u) = f(u) + h(t)
the existence, uniqueness and asymptotic behaviour of solutions is studied in [1, 6, 8, 9]. Moreover, the
authors prove the existence of pullback attractors in L?(Q) and H{(Q2). Extensions in this direction for
equations governed by the p-laplacian operator instead of the laplacian operator A are given in [7, 10],
whereas nonclassical diffusion equations are considered in [29].

On the other hand, it is possible to consider a function @ such that a (u) = a(||u||ilé) The existence

and uniqueness of solutions of the following problem

u—a(ulf)du=f, >0, ze,
u =20, on 9Q x (0,00),
u(0,2) =up(xz) x €.

is proved in [32, 19], where f € L*(Q), ug € HZ(2) and a = a(s) is a continuous function such that
0<m<a(s) <M.
By this way, in this paper the following problem is considered

up — a(||uH§{3)Au = f(u) + h(t), in Q x (0, 00),
u=0 on dN x (0,00), (2)
w(0,2) =ug () in Q,

where h € L2(0,T; L*(2)), for all T > 0, a : Rt — R* is a continuous function such that a (s) > m > 0
and f is a continuous function satisfying standard dissipative and growth conditions (see (7) below).
The aim of this paper is three-fold. First, we will prove the existence of solutions for problem (2) under
different assumptions on the nonlinear function f. Second, we will obtain the existence of attractors for
the semiflows generated by either regular or strong solutions in the autonomous case, that is, when h does
not depend on time. Third, we establish that the global attractor can be characterized by the unstable
manifold of the set of stationary points. It is important to notice that the proof of this last fact requires
the existence of a Lyapunov function on the attractor, and for this aim the term a(||uHiIé) is crucial. In

the case when a(u) = a(l(u)) it is not known whether such a function exists or not.

We prove the existence of strong solutions by assuming that either the function f is continuously
differentiable and f’(s) < n or a more strict growth condition on f. Supposing additionaly that the
function a has sublinear growth we prove the existence of regular solutions as well. Moreover, when
f'(s) < n and the function s — a (52) s is non-decreasing, uniqueness is proved.

When studying the asymptotic behaviour of solutions, new challenging difficulties arise for problem
(2). For this problem we consider the autonomous situation, that is, h € L? (Q) does not depend on t.

If uniqueness holds, then we define classical semigroups (one for regular solutions and one for strong
solutions) and prove the existence of the global attractor. Under some extra assumptions on the functions
a,h we are able to obtain that the global attractor is bounded in H? (Q) and L> ().

If uniqueness is not known to be true, then we have to define a (possibly) multivalued semiflow. Then
the existence of the global attractor is proved for regular solutions in the topology of the space L2 (Q)
and for strong solutions in the topology of the space H} (Q) (or H} (2) N LP (9)), extending in this way
the known results for the local problem [21].

The structure of the global attractor is an important feature as it gives us an insight into the long-term
dynamics of the solutions. In the multivalued situation it is a challenging problem that has not been
completely understood yet. So far in the local case several results in this direction have been obtained
for reaction-diffusion equations without uniqueness [2, 5, 21, 22].



In our nonlocal problem for both situations (for regular and strong solutions) we are able under some
conditions to define a Lyapunov function on the attractor and to prove that it is characterized as the
unstable set of the stationary points (denoted by M™ (R)). Also, the attractor is equal to the stable
set of the stationary points when we consider solutions only in the set of bounded complete trajectories
(denoted by M?® (R)).

2 Existence of solutions

Throughout this paper we will denote by |||y the norm in the Banach space X.
We consider the following nonlocal reaction-diffusion equation

ue — a([Jull ) Au = f(u) + h(t), in Q x (0, 00),
u=0 on dN x (0,00), (3)
u(0,2) =wup(xz) in Q,

where  is a bounded open set of R” with smooth boundary 0.
Let us consider the following conditions on the functions a, f,h :

h € L*(0,T; L*(Q)) VT > 0, (4)

a € C(RT), feCR), (5)
a(s)>m>0, (6)

—k — ag|s|” < f(s)s < K — anls]?, (7)

where m, a1, as >0 and k > 0, p > 2. Observe that then there exists C > 0 such that
[fI<CA+[sI"™h) VseR, (8)
and that the function F(s) := [ f(r)dr satisfies
—ao|slP — K < F(s) <k —aqls|? (9)
for certain positive constants oy, i = 1,2, and k¥ > 0, and
[F(s)| < C(1+s]?) Vs eR. (10)

Conditions (4)-(7) will be always assumed throughout the paper. Sometimes, some of the following
additional assumptions will also be used:

f € CY(R) be such that f'(s) <7, Vs € R, (11)
2n — 2

p< :_Q,ifn23, (12)

a(s) < My + Mss, Vs >0, (13)

s+ a(s®)s is non-decreasing, (14)

a(-) € C' (R") and a’ (s) >0, Vs >0, (15)

for some constants My, My, n > 0.

Remark 1 o (s) > 0 implies that (14) holds, so condition (15) is stronger than (14). Assumption (14)
is used to prove uniqueness of solutions. Assumption (15) is used to obtain the H? () regularity of the
global attractor.



Definition 2 A weak solution to (3) is a function u () such that u € L>(0,T; L?(2))NL*(0,T; H}(2))N
LP(0,T; LP(Q)) for any T > 0 and satisfies the equality

d

2 (o) + al([u®)3;)(Vu(t), Vo) = (f(u(t),v) + (A(t),v) Vv € Ho(Q) N LP(Q), (16)
in the sense of scalar distributions.

Here, we denote by (-,-) the inner product in L?(Q2) (or (LQ(Q))d for d € N) and also the duality
product between LP(€2) and L(Q2) (where ¢ is the conjugate exponent of p, that is, ¢ = p/(p — 1)). The
duality between H} (Q) and H~! () will be denoted by (-,-) .

We need to guarantee that the initial condition of the problem makes sense for a weak solution. This
can be achieved in a standard way assuming that the function a has an upper bound, that is, there exists

M > 0 such that
a(s) < M for all s > 0. (17)

Indeed, if u is a weak solution to (3), taking into account (8) and (17) it follows that
ue = al||ull3 ) Au+ f(u) +h € L*(0,T5 H~H(Q)) + LU0, T L1(Q)). (18)
Therefore, by [12, p.33] u € C([0,T], L?(©2)) and the initial condition makes sense when uy € L*(Q).
For the operator A = —A, thanks to the assumptions on the domain €, it is well known that

D(A) = H?(Q) N H () [30, Proposition 6.19].

Definition 3 A regular solution to (3) is a weak solution with the extra reqularity u € L>(g,T; H}(Q))
and u € L*(e,T; D(A)) for any 0 < e < T.

d
Remark 4 Since — € L4 (e,T; L1 () for any regular solution, in this case equality (16) is equivalent

/ /Q W) ¢ 4 0 dwdt - /T (lu()]%,) /Au{dmdt (19)
//f (t,z)) tmdacdt—i—// (t,x) & (t, x) dxdt,

forall0 <e <T and & € LP (0,T; LP (0)) .

to the following one:

d
Lemma 5 Let u € LP (¢,T; X), di: € L1(e,T; X") for all 0 < &€ < T, where X is a reflexive and

separable Banach space and X' denotes its dual space. Assume that 3 € C(RT) is such that €
Whee (e, T;[B(e),B(T)]) and 0 < B () < B(T) for all0 <e <T. Then w(-) =u(B(-) € LP (¢,T; X),

d
d—:) e Ll(e,T;X'), forall0 <e < T, and

dw du ag
e (t) = o (B (1)) s (t) for a.a. t > 0. (20)

Proof. We fix arbitrary 0 < ¢ < T. There exists a sequence u,, € C*([8(¢),B(T)], X) such that

u, — win LP (B (e), 8(T); X) and % — % in L7 (8 (¢),8(T); X') [20, Chapter IV]. We define w, (t) =

uy, (B (t)). Following the same proof of [4, Corollary VIIL.10] we obtain that w,, (-) € W (¢,T; X) and

dw, du,

du, du . . ..
It is clear that w, — win L? (¢,T; X) and o BE) — U (B(+)) in L (e, T; X'). Passing to the limit
we obtain that i i a8
w u
W=y



dt

B L () e e X, %’ € L9(s,T; X') and

in the sense of distributions D’ (0, +00; X). A o

(20) holds true. m

We would like to avoid a being uniformly bounded by above (i.e. to relax assumption (17)). We
can still prove the continuity in L2 () of u for regular solutions by assuming that a has at most linear
growth.

Lemma 6 Assume that conditions (4)-(7), (13) hold. Then any regular solution satisfies that u €

C([0,T], L*(Q)) for all T > 0. Moreover, w (t) = u (™" (t)), where a(t) = fg a(||u(s)||§{é)ds, is a regular

solution to the problem

f(w) + h(t)
a(lwlZ,)

w=0 ondNx(0,00),

w(0,2) = ug(z) in Q.

wy — Aw = , in Q x (0, 00),

(21)

Proof. Condition (13) guarantees that a(||u()\|%lé) € L*(0,T) if u € L*(0,T; Hg (22)). We make the
following time rescaling
u(t, ) = w(a(t), x).
As a(|[u(-)[|3,1) € L* (0,T), the function t — « (£) is continuous and 3 (-) = o' () satisfies the conditions
0
of Lemma 5. It is clear that the function w (¢,7) = u(a~! (t),z) belongs to the space L>°(0,T; L?(2)) N
L2(0,T; HY(Q)) N LP(0,T; LP(2)) and also to the spaces L (e, T; H} () and L%(e, T; D(A)) for any
d d
0 < e <T. Moreover, ditL € L7 (e, T; L7(9Q)) and Lemma 5 give d—I: € L(e, T; L9 (Q2)) and

dw du

1 1y 1
o == (a7t (1)) o =

— )) ————, for a.a. t. (22)
| a ()3,

Equality (19) implies that

% (a7 (1) = a (Jula™ )3y ) Au (™ (1) = £ (u (@ (1)) + h(b), for aa. ¢ >0,

0 (22) gives

dw flw(?)) h(t)
— () - Aw(t) = + for a.a. t > 0.
dt allw @) 12 * allw 0 )
1 1
Hence, w is a regular solution to problem (21). Since 0 < @ < o we obtain that

‘fli: € L*(0,T; HY(Q)) + L9(0,T; LY()).

Therefore, w € C([0,T], L?(2)), so that
we (0, 7], I3(9)).
[

d
Remark 7 Under assumptions (4)-(7) any regular solution u (-) satisfies that d—? € L1 (e, T; L1(Q)) for

all0 < & < T. Then by [12, p.33] u € C([e,T), L2 (Q)), t — |u(t)||* is absolutely continuous on [e,T)

and p p
2 _ o2
7 lu(t)]|7- =2 (dt’u> for a.a. t > e.

If the initial condition belongs to H} (2) N LP (), we can define strong solutions as well.



Definition 8 A strong solution to (3) is a weak solution with the extra reqularity uw € L>°(0,T; H}(Q) N
d
LP(Q)), u € L*(0,T; D(A)) and ditl € L?(0,T; L* () for any T > 0.

We observe that if u is a strong solution, then u € C([0,T], H} () (see [31, p.102]). Also, u €
L>(0,T; LP(2)) and u € C([0,T], L* () imply that u € C,,([0,7], LP(2)) (see [33, p.263]). Thus, an
initial condition in H} (£2) N LP (©) makes sense. Also, the equality f (u) = u;—a (”“”?{5) Awu—h implies
that f (u) € L* (0,T;L? (Q))

Also, if u is a regular solution such that du € L?(e,T;L*(Q)) for all 0 < ¢ < T, then u €

dt
C((0,T], Hy (2)).
The phase space for regular solutions will be L? (), whereas for strong solutions we will use the space
HY ()N LP(Q) (or just HE (Q) when H} (Q) C LP (Q)).
The following results will be proved in Theorems 9, 10, 11, 12, 14:

e Conditions (4)-(7), (11), (13) imply the existence of at least one regular solution for any ug € L?(2).
If, in addition, (14) holds, then it is the unique regular solution.

e Conditions (4)-(7), (11) imply the existence of at least one strong solution for any ug € H}(Q) N
LP(Q2). If, in addition, (14) holds, then it is the unique strong solution.
)

e Conditions (4)-(7), (12) imply the existence of at least one strong solution for any ug € H} ().

e Conditions (4)-(7), (12), (17) imply the existence of at least one regular solution for any ug € L?(12).
To start with we prove the existence of regular solutions for initial conditions in L? ().

Theorem 9 Assume that conditions (4)-(7), (11) and (13) hold. Then, for any ug € L*(Q) there exists
at least one regular solution to (3).

Proof. We will prove the result by compactness and using Faedo-Galerkin approximations.

Consider a fixed value T > 0. Let {w;};>1 be a sequence of eigenfunctions of —A in Hg(Q) with ho-
mogeneous Dirichlet boundary conditions, which forms a special basis of L2(2). If Q is a bounded regular
domain, then it is well known that {w;} C H}(2) N L?(Q) and that for the set V;, = spanfwy, ..., w,] we
have that U,enV,, is dense in L2(€2) and also in H}(Q) N LP(Q) [25]. As usual, P, will be the orthogonal
projection in L2 (Q), that is

= Z (z,wj)w;,

and A; will be the eigenvalues associated to the eglenfunctlons w;. For each integer n > 1, we consider
the Galerkin approximations
n
() = nj(H)w,
j=1

which satisfy the following nonlinear ODE system

d , .
{ %(un,wz) + a(||un||1,j,&)(Vun7 Vw;) = (f(un),w;) + (hyw;) Vi=1,...,n, (23)
1, (0) = Pyug.

where P,ug — ug in L?(Q). Since (23) can be written in the normal form with a continuous right-hand
side, this Cauchy problem possesses a solution on some interval [0, ¢,,). We claim that for any 7" > 0 such
a solution can be extended to the whole interval [0, T, which follows from a priori estimates in the space
L?(2) of the sequence {u,}.

Multiplying by v,:(t) and summing from ¢ = 1 to n, we obtain

5 71 O1ze + allunlzz)lun @)l = (f(n(®)), un(t)) + (b un(t)) for ae. t € (0,8a).  (24)



Using (7) and the Young and Poincaré inequalities we deduce that

(f (un(t)), un(t)) < &I9Q] — aallun @)I[7,,

(h(t),n(8) < 3 8y + 53— [H(O

Hence, from (24) it follows that

m 1
lun (B)]I72 + 5\\%(1?)”?13 + anllun ()] < KIQf+ mllh(t)lliz for a.e. t € (0,t,). (25)

Then, integrating (25) from 0 to ¢ € (0,¢,) we deduce

1 2 m [* 2 ' P
o 1Un L2 Y n HL 1 n Lp
lun®llze + 5 | llun(s)lliyds +ar | lun(s)|ods

I 1 1
<0+ i [ IO + (O < THa + KoT) + Sl )]
Therefore, the sequence {u,, } is well defined and bounded in L> (0, T'; L2(2))NL?(0, T'; Hi (2))NLP(0, T; LP(£)).

Also, {—Au,} is bounded in L?(0,T; H=1(Q)).
On the other hand, by (8) it follows that

T T
/ | Flu(e, ) [7dzdt < 2971CU(QIT + / lu(t) 2, d),
0 Q 0

with % + % = 1. Hence, since {u, } is bounded in L?(0,T; LP(2)), { f(un)} is bounded in L(0,T; L1(2)).
On the other hand, multiplying (23) by A;v,i(t) and summing from ¢ = 1 to n, we obtain

1d

1 m
5@”%”?{3 +m|Aug|Fe < (f(un), —Aug) + (h(t), —Aun) < nllug |7 + %Ilh(t)lliz + 5||Aun|\2p-

Integrating the previous expression between s and ¢, with 0 < s < ¢ < T, and using (11) we have

1 2 m [* 2 T 2 1 2 1 ! 2
SOl + 5 [ 18w e < [ ) ygar + Glhue sy + 5 [ IO (20)

Now, integrating in s between 0 and ¢, it follows that

T
e (1)1 < o7 +1) [ s () Fygr + KT

Hence,

< 2nT + 1

T
2 2
o )y < 2 [ a0y +

K3(T)T

(28)

forallt € [e, T] with e € (0, 7). From the last inequality and (26) we deduce that {||un ()| } is uniformly
bounded in [¢, T] and by the continuity of the function a we get that {a(||u,(t)[|3,)} is bounded in [e, T.
0

Also, it follows that
{u,} is bounded in L>° (g, T; Hy(2)). (29)

On the other hand, taking s = ¢ and t = T in (27), by (26) we obtain that
{un} is bounded in L?(e, T; D(A)), (30)

so {—Au,} and {a(Huan{é)Aun} are bounded in L%(e,T; L(€2)). Thus,

{d;t"} is bounded in Li(e, T; LY(Q2)). (31)



Therefore, there exists u € L (e, T; Hi(Q)) N L?(0,T; HE () N L>(0,T; L*(Q)) N L2(e, T; D(A)) N

d
L?(0,T; LP(?)) such that ditb € L1(e,T; L1 () and a subsequence {uy }, relabelled the same, such that

U, = win L= (e, T; HY (),
U, = u in L0, T; L*(Q)),
(0,T; Hy (%)),
u, — u in LP(0,T; LP(£2)),
u, — u in L?(g,T; D(A)), (32)
C%:L - % in LY(e, T; LY(Y)),
fun) = x in L9(0, T; L1(€2)),

alflunl%y) = b in L, T),

unéuinL2

for any 0 < & < T, where — means weak convergence and — weak star convergence.

Moreover, by (30)-(31) the Aubin-Lions Compactness Lemma gives that u,, — u in L?(e, T; H3(Q)),
0 un(t) — u(t) in HE (Q) a.e. on (g,T) for any € > 0. Consequently, there exists a subsequence {u,},
relabelled the same, such that u, (¢t,2) — u (¢,2) a.e. in Qx (0,T). Also, we know that P, f(u,) — x (see
[30, p.224]). Since f is continuous, it follows that f(u, (t,z)) — f(u (t,z)) a.e. in @ x (0,7). Therefore,
in view of (32), by [26, Lemma 1.3] we have that x = f(u).

As a consequence, by the continuity of a, we get that

a([lun(®)3) = allu(®))  ae. on (e,7).

Since the sequence is bounded, by the Lebesgue theorem this convergence takes place in L?(g,T) and
b= a(|lul]3,,) on (g, T). Thus,
0

alllunl%y) M, = alullyy)Au, i L(e, T L2(2)). (33)

Finally, since {w;} is dense in HE(2) N LP(Q), in view of (32) and (33), we can pass to the limit in
(23) and conclude that (16) holds for all v € H}(Q) N LP(Q).

To conclude the proof, we have to check that u(0) = ug. Indeed, let be ¢ € C1([0,T]); HE(Q)NLP(Q)),
with ¢(T) = 0, ¢(0) # 0. We consider the functions w (£) = u(a™*(t)), wy, (t) = u, (a;* (t)) (here
an(t) = fot a(||uwy (1) Hzédr)), which by Lemma 6 are regular solutions to problem (21) with initial

conditions w (0) = ug and to the corresponding Galerkin approximations with initial condition w,, (0) =
d

un, (0) = P,ug, respectively. Since d—lf € L*(0,T; H=(Q))+L4(0,T; L9(£)), we can multiply the equation

in (21) by ¢ and integrate by parts in the ¢ variable to obtain that

f(w(t)) + h(?)

Mv¢(t)>dt+(w(0),¢(o)), (34)

T T
[ cwo.em - sww.oona- [ (
0 0

Pof(wn(t)) + Poh(t)
a(llwn (t)7)

/O(—(wn(t%(ﬁ'(t))—<Awn(t)7¢(t)>)dt=/0 <

We can easily obtain by the previous convergences and (6) that

w, = w in L* (0,T; Hy (),
Aw, — Aw in L? (O,T; H1 (Q)) ,

a(lwn(®)%;) aw@z,) ™ (0,75 L7 (€2).




Passing to the limit in (35), taking in to account (34) and bearing in mind w, (0) = P,ug — uo we get

(w(0),(0)) = (uo, ¢ (0)) -
Since ¢ (0) € H}(Q) N LP(Q) is arbitrary, we infer that w(0) = u (0) = uo.

Hence, u is a regular solution to (3) satisfying « (0) = ug. m

Second, we will prove the existence of strong solutions for initial conditions in HE(£2) N LP(£2). In this
case, we do not need to impose the upper bound (13) of the function a.

Theorem 10 Suppose that conditions (4)-(7) and (11) are fulfilled. Then, for any ug € H(2) N LP(Q)
there exists at least a strong solution to (3).

Proof. We consider, as in Theorem 9, the Galerkin approximations {u,} and an element u for which
(32) holds. Under the aforementioned conditions, we will obtain that u,, converges to a strong solution to
(3). In this proof it is important to observe that P,uq — ug in the spaces H{ () and L? (Q2) [30, p.199
and 220]. Thus, the sequences ||Pnu0||H3 and || P,ugl|;, are bounded.

d
First, we multiply the equation in (23) by Hin to obtain

dt
d 1d d duy,
155 O + a5 5 Ty = 5 | Flua)do + (u0e),

Introducing

S
A(s) = / a(r)dr, (36)

0

we have

SOl + 5 [ 540wl ~ [ Flun)ds] < SIHOIE:. (37)

Now, integrating (37) we have

3 | 155 uneds + 5 A Oly) ~ [ Flun(®)da

< AU Ol - [ FonO)dot 5 [ IAIEads,

From (6) and (9) we get

m ~ 1 [t d
e Ol + @l + 5 [ 15 un()3eds
2 0 2 0 ds (38)
1 ~
< SAUun(0)lI7) + @2 llun (O, + K(T).
Now, from (38) we obtain that
dun . . 2 2
[ 8 bounded in L(0,T; L°(9)), (39)
0 J J
Gln | OU L2 L2
I o in L*(0,T; L (). (40)

On the other hand, the embedding H{(2) cC L?(Q) and the Aubin-Lion Compactness Lemma imply
that
u, — win L2(0,T; L*(Q)).

Hence,
u, — u for a.e. (z,t) € Q x (0,T).



Moreover, thanks to

2

d
< ||EU7L“%2(O,T;L2(Q)) [t2 —t1]  Vti1,t2 € (0,77,
L2 ¢

ta d
/t1 %un(s)ds

(38), (39) and H{(Q) ccC L*(Q), the Ascoli-Arzela theorem implies that {u,} converges strongly in the
space C([0,T]; L*(2)) for all T' > 0. Therefore, we obtain from (38) that w, (t) — u(t) in HJ ()N LP(Q),
for any ¢t > 0, and

et (t2) — 1w (£2) |20 = ‘

u, = win L0, T; H} (Q) N LP(Q)). (41)

Also, by the continuity of the function a, {a(||un (t) ||§{1)} is uniformly bounded in [0, T7].
0
Multiplying (23) by A;vni(t) and summing from ¢ = 1 to n, we obtain

1d

1 m
o el ] = A = (f (), ~ D) + (1), D) < nlfun g + 51O + 1| = A
Integrating the previous expression between 0 and 7T it follows that
1 2 m [T 2 g 2 1 2
Sllun(Mligy + 5 [ Aun(s)lzeds <n | (un (Bl dt + S llun(0)]zy + K(T). (42)
2 0 2 0 0 0 2 0
Finally, taking into account (26), from (42) we deduce that
u,, is uniformly bounded in L*(0,T; D(A)),
SO
u, — u in L*(0,T; D(A)). (43)
Arguing as in Theorem 9 we also obtain that
Up — uin L2 (O,T; H; (Q)) ,
a (lunli3y) = a (uli3y ) in 22 (0,7),
fun) = f(u) in L0, T; L7 (),
@ (Jlun ;) Auwn = a (Jlull3y ) Au in £2(0.7; L2(2). (44)

Therefore, we can pass to the limit to conclude that u is a strong solution.

It remains to show that « (0) = ug. This can be done, in a similar way as in Theorem 9, by multiplying
the equation in (3) by a function ¢ € C1([0,T]); H(Q)NLP(£2)), with ¢(T) = 0, ¢(0) # 0 for the Galerkin
approximations u,, and the limit function u and integrating by parts. Then taking into account the above
convergences and P,ug — ug in L? (£2) we obtain that u (0) = ug. =

We can still ensure the existence of strong solutions without using condition (11) by imposing extra
assumptions on the parameter p. Indeed, if (12) is satisfied, then the embedding H{ (Q) ¢ L>®~1) (Q)
LP () and (8) imply that

@I <200+ [ fu(t. )P0~ Vdn) < & (14 o)) (45)

S0

f(u) € L*(0,T; L*()) (46)
provided that u € L>(0,T; H}(2)). Moreover, f (A) is bounded in L?(0,T; L?(f2) if A is a bounded set
of L>(0,T; H ()).

Theorem 11 Assume that (4)-(7) and (12) hold. Then for any ug € H}(Q) there exists at least one
strong solution to (3).

10



Proof. Reasoning as in Theorem 10 and considering as well the Galerkin scheme, (32), (40) and (41)
hold. We just need to check that (43) is also true and then repeat the same lines of Theorem 10.
Multiplying (23) by A;vni(t) and summing from ¢ = 1 to n, we obtain

1d
iallunllip + ml|Auy 172 = (f(un), —Auy) + (h(t), —Au)
1 m 1 m
< %Ilf(un)lliz +5l - Aup|7z + EHh(t)Hiz + ZHAUTL”%Z'

Integrating between 0 and T it follows that

1 m [T
Sl @l + 7 [ 18w (o) ads
1 ’ (47)

T T
1 1
< g | I @)+ 5 ln O) 3 + / ()|t

In view of (41) and (45), we have that f (u) is bounded in L? (0,7 L? (Q)), so from (47) we get that
{un} is bounded in L?(0,T; D(A)). Therefore,

u, — u in L*(0,T; D(A)), (48)
as required. m

Actually, in the case of regular solutions, we can get rid of the condition (11) as well by imposing the
extra assumption (12) on the constant p.

Theorem 12 Assume that (4)-(7), (12) and (17) hold. Then, for any uy € L?(Q) there exists at least
one regular solution to (3).

Proof. Let u? € H}(Q) be a sequence such that uf — ug in L*(Q2). By Theorem 11 there exists a strong
d n
solution u™(+) of (3) with u™(0) = u?. Since u™ € L? (0,T; D (A)) and % € L?(0,T;L? (1)), from [31,

p.102] the equality
d

Sy = 2= A )
holds true for a.a. ¢ > 0.
Now, multiplying (3) by u™ and using (7) it follows that
1d
2 dt
< QL+ [ 2 lu™ (@) L2 < ]9 + LHh(f)Hiz + 2l (1)1
2mA; 2 Hp?

lu™ ()17 + mllu" |7 + eallu” #)I1 (49)

[u™ (@)II72 < llu™(0)][72 + K (T). (50)

Thus, integrating in (49) between ¢ and ¢t + r we get
t+r t+r
Dl 4 m [ ds + 201 [ [ )lds
t t

1 t+r N .
< 26|+ / 1h(s)I72ds + [lu™ ()72 < [lu™(0)][72 + K2(T).
t

Also, by (9) and (17) we deduce that

[ - @A(nu"(s)n%{p - /Q mn(s))dz> ds

tHr r B il , 52
<[ G ds IRl [ 0 o)lds %
t t

< K3(T) (1+ [[u™(0)]22)

11



forallm >0 and ¢ > 0.
On the other hand, multiplying (3) by u} we have

1O + 5 (54000 - [ Far @) < S0l (5)

where the fact that ¢ — [, F(u"(t))dx is absolutely continuous on [0,7] and

d du™

i [ F o= (£ 0). % 0). oraa >0

is proved by regularization using the regularity of strong solutions and (45). By the Uniform Gronwall
Lemma [34] we obtain

K3(T)(1 + [[u"(0)]12)

1
§A(||u"(t+r)||%,é) —/ Fu"(t+r))de < + Ky(T), forall0<t<t+r, (54)
Q

so that by (6) and (9) we obtain that

KoM+ [u"O)F2) |, e oy (55)

lu™ (¢ + )3 + la™ (E+ )17, <
for all t > 0. Therefore, the sequence u™(-) is bounded in L (r, T; Hi () for all 0 < r < T'. Consequently,
a(|lu™ (+) ||§101) is bounded in [r, T].
Integrating (53) over (r,T'), from (6), (9) and (54) it follows that
1 (7 d " m, ., ~ i on
3 ) I Ot + Sy + Gl (DI, — ol
1 T d n 2 1 n 2 n
<5 [ e @Olzedt + S AW (D)z) — | Fu™(T))dx
2 ). V& 2 37,

T
<3 [ IO+ JAG )1y - [ Fr )

1 K3(T)(1 + [[u"(0)]72)

T
< 5/ | h(t)||% 2 dt +

+ K4(T).

n

d
Thus % is bounded in L2(r, T; L2()) for all 0 < 7 < T.

Taking into account (45) and (55) we infer that f(u") is bounded in L? (r,T; L*(2)). By this way,
the equality a(||u”[7,)Au™ = uf — f(u") + h(t) implies that u" and a(Hu”Hf{é)Au” are bounded in
0
L?(r,T; D(A)) and L*(r,T; L*(f2)), respectively, for all 0 < r < T.
By the compact embedding H{(2) € L?(Q), we can apply the Ascoli-Arzela theorem and obtain that,
up to a sequence, there exists a function u such that

u" = in L (r, T; HE(Q)),
u" — win C([r,T], L*()),
u™ — wu in L?(r,T; D(A)), (57)
du™  du
- )

—in L3(r,T; L*(Q
dt ar (r, T3 L

forall 0 <r <T.

On the other hand, from (51) we infer that u™ is bounded in L°°(0,T;L?(Q)) N L2(0,T; H}(Q)) N
LP(0,T; LP(QY)), for all T > 0. Therefore, there exists a subsequence u™, relabelled the same, such that
u™ = uin L0, T; LA(Q)),

u" — u in L*(0,T; Hi(Q)), (58)
u"™ — uin LP(0,T; LP(S2)),

12



for all T > 0. On the other hand, arguing as in the proof of Theorem 9 we obtain that
f(u") = f(u) in L0, T; LU(2)),
u" — win L2(r, T; HY (),
alu I2,,) = a(ull%y) in L2 (0,T),
alllu" (®) ) Au" = a(lu(®)]Z)Au in L2(r, T; L2(€)).

Passing to the limit we obtain that « (-) is a regular solution.
Finally, by a similar argument as in the proof of Theorem 9 we establish that u (0) = ug. ®

Remark 13 Under the conditions of Theorem 12 any regular solution u (-) satisfies from (45) that f (u) €
d

L? (e,T; L* () for all0 < e < T, and then ditL € L?(e,T; L*()) as well. Hence, u € C((0,T], Hg ()

for all T > 0.

We finish this section by giving a sufficient condition ensuring the uniqueness of solutions.

Theorem 14 Assume the conditions of Theorem 9 and additionally that (14) is satisfied. Then there
can exists at most one regular solution to the Cauchy problem (3) for ug € L? (Q).
If, moreover, My = 0 in condition (13), then there can be at most one weak solution.

Under the conditions of Theorem 10 and (14), there can exists at most one strong solution to the
Cauchy problem (3) for ug € H} () N LP (Q).

Proof. Suppose that v and v are two regular solutions to (3) with the same initial condition ug = vg.
Then by subtraction and multiplying by © — v we get by Remark 7 that

LA vllZe + (—a(lu () [72) Au +a(llv () [ 52) Av,u = v) = (f(w) = f(v),u = v).

Let us consider
I'=(=a([lu®) 7)) Au +a(||v (t) | 7:)Av, u —v).

After integrating by parts, we obtain
1= /QW”“@ 13)[Vul? = a(llu (t) 3 Vuve — a(|lv () |%,) Vo + a(o () [3,)[Vo]?)d

> au (9 3 e (8) B3y — (a6 1) + aCllo ()13 ) s (2 gl C6) g+l (2) 3Dl () I
= (alllu (8) B3l (8) Ly = alllo (8) I )00 (6) g ) (I 69 g = Il (8) ) >, (59)

where we have used (14) in the last inequality.
Hence, from (59) and [’ (s) < 7, we infer

gl ol < [ () - fen - odo= [ ([*76)as) 0= o < ol

By Remark 7 it is correct to apply the Gronwall lemma over an arbitrary interval (e,t), so
lu(t) = o(®)lF2 < [lu(e) —v(e) |72 79, ¢ >0.

Since Lemma 6 implies that u,v € C([0,T], L? (2)), we pass to the limit as e — 0 to get

lu(t) = v@®)lZ2 < [lu(0) — v (0) |7 €™, ¢>0.

Hence, the uniqueness follows.

If My =0 in (13), then by (18) the above argument is valid for weak solutions as well.

The proof of the last statement is the same with the only difference that condition (13) is not needed.
|
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3 Existence and structure of attractors

In this section we will prove the existence of global attractors for the semiflows generated by regular and
strong solutions under different assumptions in the autonomous case, that is, when the function A does
depend on t. We will also establish that the attractor is equal to the unstable set of the stationary points
or to the stable one when we only consider solutions in the set of bounded complete trajectories.

We consider the following condition instead of (4):

heL*(Q). (60)

Throughout this section, for a metric space X with metric p we will denote by distx (C, D) the
Hausdorff semidistance from C to D, that is, distx (C, D) = sup.c¢ infaep p (¢, d) .

It is important to observe that in the theorems of existence of solutions of the previous section we
have used either assumption (11) or (12). Now, when we use condition (11) in some cases it is necessary
to add a restriction on the constant p given below in (83).

We summarize the main results of this section:

e Conditions (5)-(7), (11), (17), (14) and (60) imply that the regular solutions generate a semigroup
in the phase space L? (Q) possessing a global attractor, which is compact in H{ (©2) and bounded in
L? (Q) (Theorem 17 and Lemma 39). If, in addition, either h € L* (Q) or p < 2n/(n—2) for n > 3,
then it is characterized by the unstable set of the stationary points (Proposition 40). Moreover,
condition (15) implies that the attractor is bounded in H? (Q) (Proposition 19).

e Conditions (5)-(7), (17), (60) and either (12) or (11), (83) imply that the regular solutions generate
a (possibly) multivalued semiflow in the phase space L? (2) possessing a global attractor, which is
compact in Hj () and L? (Q) and is equal to the unstable set of the stationary points (Theorems
33, 37).

e Conditions (5)-(7), (17), (60) and either (12) or (11), (83) imply that the strong solutions generate
a (possibly) multivalued semiflow in the phase space Hg (€2) possessing a global attractor, which is
compact in H () and L? (Q) and is equal to the unstable set of the stationary points (Theorems
45, 48).

e Conditions (5)-(7), (11), (17), (14), (60) and (83) imply that the strong solutions generate a semi-
group in the phase space Hi (Q) possessing a global attractor, which is compact in H} () and
LP (2) and is equal to the unstable set of the stationary points (Theorems 50, 53). Moreover,
condition (15) implies that the attractor is bounded in H? (Q) (Proposition 54).

e Conditions (5)-(7), (11), (17), (14) and (60) imply that the strong solutions generate a semigroup
in the phase space H} (2) N L? (Q) (endowed with the induced topology of H{ (€2)) possessing a
global attractor, which is compact in H} () and bounded in L? () (Theorem 57). If, in addition,
either h € L™ (Q) or p < 2n/(n — 2) for n > 3, then it is characterized by the unstable set of the
stationary points (Theorem 60). Moreover, condition (15) implies that the attractor is bounded in
H? (Q) (Proposition 61).

e In all the above situations h € L () implies that the global attractor is bounded in L ()
(Theorems 18, 36, 47, 59).

3.1 Regular solutions

We split this part into three subsections.

3.1.1 The case of uniqueness

If we assume conditions (5)-(7), (11), (14), (60), then by Theorems 9 and 14 we can define the following
continuous semigroup 7). : RT x L*(Q) — L?(Q) :

Tr(tau()) = u(t)v (61)
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where wu (+) is the unique regular solution to (3). We denote by PR the set of fixed points of T;., that is,
the points z such that T).(¢, z) = z for any ¢t > 0.

We also observe that if we assume (17), then using the calculations in (52)-(55) for the Galerkin
approximations of any regular solution u (-) one can obtain that u € L™ (e, T; L? (Q0)), forall 0 < e < T,
and then u € C,,((0, +00), L? (2)).

Our first purpose is to obtain a global attractor. We recall that the set A is a global compact attractor
for T, if it is compact, invariant (which means 7T, (¢,.A) = A for any ¢t > 0) and it attracts any bounded
set B, that is,

disty2 (T-(t,B),A) — 0 as t — +o0.

Proposition 15 Let (5)-(7), (11), (13), (14) and (60) hold. Then the semigroup T, has a bounded
absorbing set in L?; that is, there exists a constant K such that for any R > 0 there is a time to = to(R)
such that

lu(®)]|gz < K forall t>tg, (62)

where ||uoll 2 < R, u(t) = T,(t,up). Moreover, there is a constant L such that
t+1
/ ||u(s)||%{éds <L forall t>t. (63)
¢

Proof. Multiplying equation (3) by u and using (7) and Remark 7 we have

ld
2dt

m 1 K1
[u(t)7: + §IIU(t)||§13 +anfu(t)pe < kO + m\\hlliz =5 (64)

2 > Mllu(t)]2. give

The Gronwall lemma and the inequality ||u(t)
lu(t) 122 < [lu(e)]2ae ) + L for any & > 0.
Am

As u € C([0,T],L? () by Lemma 6, passing to the limit we have

K1

(@) < () Fem + (63)
Hence, taking
1 AlmR2
t>tg = In
)\1m K1

we get (62) for K = /\21’21 On the other hand, integrating (64) between ¢ and ¢ + 1 and using (65) we
obtain

t+1
m [ (o) Byyds < Ju@)s +
t
and using the previous bound we get
t+1 2
/ Hu(s)||§{6ds < Moy P forallt > to,
‘ m m

so that (63) follows. m

Proposition 16 Let (5)-(7), (11), (17), (14) and (60) hold. Then there exists a bounded absorbing set
in HY () N LP (Q); that is, there is a constant M such that for any R > 0 there is a time t; = t1(R)
such that

[u@ gy + lu @, <M for all t > t,

where ||uo|| 2 < R, u(t) =T (t, up).
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Proof. The following calculations are formal but can be justified by the Galerkin approximations.
Arguing as in (52)-(55) we obtain the existence of a constant C' such that

I (1w O) 17 + 175 (1w (07, < C(+ [u(0)]1Z2)-
Hence, the semigroup property T,.(t + 1,ug) = T,-(1, T (¢, up)) and (62) imply that
1T (t+ 1, u0) |3 + T (¢ + L ug) [, < L+ K2) VE > to (),
if ||uo|| ;2 < R, which proves the statement. m

Theorem 17 Let (5)-(7), (11), (17), (14) and (60). Then the equation (3) has a connected global
compact attractor A,, which is bounded in Hg (Q) N LP (Q).

Proof. Since a bounded set in H} () is relatively compact in L?(Q2) which is a connected space, the

result follows from Theorem 10.5 in [30] and Proposition 16. m

We will also obtain the boundedness of the attractor in the spaces L (Q2) and H? (Q).

First, we recall that a function ¢ : R — L2 () is a complete trajectory of the semigroup T, if
¢(t) =T-(t —s,¢(s)) for any t > s. ¢ is bounded if the set Uscr (s) is bounded. It is well known [24]
that the global attractor is characterized by

= {¢(0) : ¢ is a bounded complete trajectory}. (66)

Theorem 18 Let (5)-(7), (11), (17), (14) and (60) hold. Then the global attractor A, is bounded in
L>(Q), provided that h € L (Q).

Proof. We define v, = max{v,0}, v_ = —max{—wv,0}. We multiply equation (3) by (u— M), for some
appropriate constant M and integrate over () to obtain

53 16— M) P+ alu@ly) [ (90— Pde = [ (7(at) + W= 3), o

where we have used the equality %% Jo [(w— M) 4 *dz = (us, (w — M)4), which is proved by regulariza-

tion.

Since h € L> (), by (7) we deduce that
(f(w) + h)u <K — alul?.
It follows that

f(u)+h <0 when uz(%)l/p:M.

Therefore, we have
(f(uw) + h)(u— M)y <0.
Thus, by (6) and the the Poincaré inequality, we deduce that

d
a/ |(’U,*M)+|2dl’S72mA1/ |(’U,7M)+|2dz
Q Q

Using the Gronwall inequality, we have

[ ) =30y e < =) [ () = a). P

For any y € A, there is by (66) a bounded complete trajectory ¢ such that ¢ (0) =y. Then taking ¢t =0
and 7 — —oo in the last inequality, we obtain y (z) = ¢(0,2) < M, for a.a. z € Q. The same arguments
can be applied to (v — M)_, which shows that

lyllLe < M, Vye A,.

If we assume (15), then it is possible to show that the global attractor is more regular.
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Proposition 19 Let (5)-(7), (11), (17) and (60) hold. If, additionally, (15) is satisfied, then there exists
an absorbing set in H? () and the global attractor is bounded in H?(12).

Proof. We will prove the existence of an absorbing set in H? (). The boundedness of the global
attractor in this space follows then immediately. We proceed formally, but the estimates can be justified
via Galerkin approximations.

Let u(t) = T0(t, uo) with |lugl/ ;2 < R. First, we differentiate the equation with respect to ¢

d
= a'([[ullf) 7 Il Au = a(llullfy) Au = f'(w)u.

Multiplying by u; we get

1d

1
gz + 5 a(HUIIHl)( llllZy)? + allulF) ey = /f )(u)*da. (67)

By (6), a’ (s) > 0 and f’ (s) <7 we obtain

1d

5 o lall2a + mlluel 3y < el 22 (68)

Second, multiplying (3) by u; and reordering terms, we obtain

a (oluly) ()
dt( Sy - [ Fyde— [ nwude ) + s = 3 fully . (©9)

Proposition 16 implies that
a'(|2l3) < 7 = supjs<ara’ (s%)

if 2z belongs to the absorbing set in Hj (©). On the other hand, multiplying the equation by —Aw and
using Proposition 16, we obtain

d
Sl +mlAu@®)ze < 2nllu@)liz; + — Hh’”L2 <Ky VE>4(R).

Hence, by (69) and Proposition 16, it follows

a(llullZ,
dt( i) JullZ — /;r dm—/ haude | + ulZ < TEDP, iz n(R). (70)

Multiplying both sides of the inequality f’(s) < n by s and integrating between 0 and s, we obtain

sf(s) < F(s)+ ?77, Vs € R. (71)
Moreover, integrating f’(s) < n twice between 0 and s, we infer
F(s) < gSQ +Cs, VseR. (72)
Now, we multiply (3) by u and integrate between ¢ and ¢ + 1 to obtain

t+1
ghatt+ DI+ [ (ol ) - [ s~ [ peyar) ds = Gl @

From (71), (73) and Proposition 15 it follows

t+l a(||u||§{5) 9 1 9 n [N ~
T||u||Hé — [ Fu)dz — [ h(z)udz | ds < §Hu(t)||L2 +3 lulli2ds <L Vt >ty
t Q Q t
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The last inequality allows us to apply the Uniform Gronwall Lemma to (70) in order to obtain

alulyy) o
5 0 ||U||H5 - / F(u)dx 7/ h(z)udx < L+ §K1M vVt >t + 1. (74)
Q Q
Using (6) and (72) we get
a(lluly,) : i
5 iy = [ Fyda = [ bude > =3 Julls = Cllul = (75)

Now, integrating (70) from ¢ to ¢t + 1, using (74), (75), by Proposition 15 we have
t+1 B " _
/ ||uSH2Lst§L+7K1M2+§K2+CK:/)1, Yt >t + 1. (76)
t
Hence, the last equation allow us to apply to (68) the Uniform Gronwall Lemma [34] to obtain
du, . 9
12013 < oo V2042 (77)
Finally, we multiply (3) by —Au and use (6) to obtain
m 1 1
™l < el + I + el
Thus, by Proposition 16 and (77), we deduce that

[u®)f < p3 V2t +2.

3.1.2 Abstract theory of attractors for multivalued semiflows

Prior to studying the case of non-uniqueness, we recall some well-known results concerning the structure
of attractors for multivalued semiflows.

Consider a metric space (X, d) and a family of functions R C C(Ry; X). Denote by P(X) the class
of nonempty subsets of X. Then we define the multivalued map G : Ry x X — P(X) associated with
the family R as follows

G(t,uo) = {u(t) : u(-) € R,u(0) = ug}. (78)

In this abstract setting, the multivalued map G is expected to satisfy some properties that fit in the
framework of multivalued dynamical systems. The first concept is given now.

Definition 20 A multivalued map G : Ry x X — P(X) is a multivalued semiflow (or m-semiflow) if
G0,z) ==z forallz € X and G(t+ s,z) C G(t,G(s,x)) for allt,s >0 and x € X.
If the above is not only an inclusion, but an equality, it is said that the m-semiflow is strict.

Once a multivalued semiflow is defined, we recall the following concepts.

Definition 21 A map v : R — X is called a complete trajectory of R (resp. of G) if y(- + h) [[0,00)E R
for all h € R (resp. if v(t + s) € G(t,v(s)) for all s € R and t > 0).
A point z € X is a fized point of R if () = z € R. The set of all fixed points will be denoted by Rr .
A point z € X is a stationary point of G if z € G(t,z) for all t > 0.

Definition 22 Given an m-semiflow G a set B C X 1is said to be negatively (positively) invariant if
B C G(t,B) (G(t,B) C B) for all t > 0, and strictly invariant (or, simply, invariant) if it is both
negatively and positively invariant.

The set B is said to be weakly invariant if for any x € B there exists a complete trajectory v of R
contained in B such that v(0) = . We observe that weak invariance implies negative invariance.
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Definition 23 A set A C X is called a global attractor for the m-semiflow G if it is negatively invariant
and it attracts all bounded subsets, i.e., distx(G(t,B), A) — 0 as t — +o0.

Remark 24 When A is compact, it is the minimal closed attracting set [28, Remark 5].

In order to obtain a detailed characterization of the internal structure of a global attractor, we
introduce an axiomatic set of properties on the set R.

(K1) For any x € X there exists at least one element ¢ € R such that p(0) = .
(K2) ¢, () :=¢(-+7) € R for any 7 > 0 and ¢ € R (translation property).
(K3) Let ¢1,p2 € R be such that ¢3(0) = ¢1(s) for some s > 0. Then, the function ¢ defined by

(t) 0<t<s,
So(t) = { zQEt)_ S) s S t,

belongs to R (concatenation property).

(K4) For any sequence {¢"} C R such that ¢™(0) — xo in X, there exist a subsequence {¢™*} and
¢ € R such that ¢ (t) — ¢(t) for all £ > 0.

Remark 25 If in assumption (K1), for every x € X, there exists a unique ¢ € R such that p(0) = z,
then the set {p € R : p(0) = x} consists of a single trajectory ¢, and the equality G(t,x) = p(t) defines
a classical semigroup G : R* x X — X.

It is immediate to observe [11, Proposition 2] or [23, Lemma 9] that R fulfilling (K1) and (K2) gives
rise to an m-semiflow G through (78), and if besides (K3) holds, then this m-semiflow is strict. In such
a case, a global bounded attractor, supposing that it exists, is strictly invariant [28, Remark 8].

Several properties concerning fixed points, complete trajectories and global attractors are summarized
in the following results [21].

Lemma 26 Let (K1)-(K2) be satisfied. Then every fixed point (resp. complete trajectory) of R is also a
fized point (resp. complete trajectory) of G.
If R fulfills (K1)-(K/), then the fixed points of R and G coincide. Besides, a map v : R — X is a

complete trajectory of R if and only if it is continuous and a complete trajectory of G.

The standard well-known result in the single-valued case for describing the attractor as the union of
bounded complete trajectories (see [24]) reads in the multivalued case as follows.

Theorem 27 Consider R satisfying (K1) and (K2) and either (K3) or (K4). Assume that G possesses
a compact global attractor A. Then

A={7(0) : v € K} = Urer{~(t) : v € K}, (79)
where K denotes the set of all bounded complete trajectories in R. Hence, A is weakly invariant.

We finish this section by stating a general result about the existence of attractors. We recall that the
map t — G(¢, ) is upper semicontinuous if for any z € X and any neighborhood O(G(t,z)) in X there
exists § > 0 such that if d(y,x) < §, then G(t,y) C O.

Theorem 28 [28, Theorem 4 and Remark 8] Let the map t — G(t,x) be upper semicontinuous with
closed values. If there exists a compact attracting set K, that is,

distx (G(t,B),K) — 0, as t — 400,

for any bounded set B, then G possesses a global compact attractor A, which is the minimal closed
attracting set. If, moreover, G is strict, then A is invariant.

We observe that, although in the papers [28], [21] the space X is assumed to be complete, the results
are true in a non-complete space.
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3.1.3 The case of non-uniqueness

If we do not assume the additional assumptions on the function a (-) of Section 3.1.1 ensuring uniqueness
of the Cauchy problem, we have to define a multivalued semiflow.

We have two possibilities: either to consider the conditions of Theorem 9 with an extra growth as-
sumption or to use the conditions of Theorem 12.

If we assume conditions (5)-(7), (12), (17) and (60), then by Theorem 12 for any ug € L* () there
exists at least one regular solution and (45) implies that f(u) € L?(e, T; L?(2)) for any regular solution,

d
o ditL € L?(e,T; L*(Q)) as well. In this case, as H} (Q) C LP (Q), we have that u € C((0, +o0), Hi (Q)) C
C((0,+00), L7 (2)) .

If we assume conditions (5)-(7), (11), (13) and (60) as well, then we known by Theorem 9 that for
any ug € L? (Q) there exists at least one regular solution.

In order to obtain the necessary estimates leading to the existence of a global attractor, we need to
ensure that

d
CT;L € L2(e, T; L*(Q2)), forall 0 < & < T, (80)
holds, as by [31, p.102] we obtain that
d, o
%H“”H(} = 2(—Au, uy) for a.a. t. (81)

and u € C((0,+00), Hi ().
We note that the set of regular solutions of that kind is non-empty if we assume (17), as using
inequalities (52)-(56) in the proof of Theorem 9 we prove that the regular solution satisfies (80).

We also observe that we can force all the regular solutions to satisfy ditl € L?(e,T; L*(Q)) with

an additional assumption on the constant p, which is weaker than (12). This is achieved by obtaining
that f(u) € L?(e,T;L*(R))), which can be done by using an interpolation inequality. Indeed, for u €
L> (e, T; H () N L%(e, T; D(A)) we have the interpolation inequality

2(y+1 2
| ||L(2W<v+1)) (e,T;L2(7+1) () < Hu||L1°(57T;LP1(Q))||UH%Q(E,T;LP2 Q) (82)
where v = %, p1 = %, po = n2f4, provided that n > 4; v < 2, p1 =4, py = ﬁ ifn=4; v=

3, p1 =6, po = +oo if n = 3; and v > 0 is arbitrary for n = 1,2. We have used the embeddings H¢ () C
LP (), H?(Q) C LP2 (Q) and [35, Lemma 11.4.1, p. 72]. Thus, (8) implies that f(u) € L?(e,T; L*(Q))
if

p<y+2 (83)
and also that

O raay = [ [ 150G it <040 [ [ paopewa. @

Condition (83) also implies H} () C LP (Q2), so u € C((0, +00), LP(12)).
Another necessary property to obtain estimates is the fact that ¢ — [, F(u(t))dz is absolutely con-
tinuous on [, T] for all 0 < e < T and

/}' ))da = (f (u (t)),ccl;(t)), for aa. ¢ > 0. (85)

This can be proved by regularization in both situations by using the regularity of regular solutions and
either (45) or (84).

Therefore, under either the conditions of Theorem 9 with the extra assumption (83) or the conditions
of Theorem 12 we define the set

R = K" := {u(-) : u is a regular solution of (3)}.
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We define the (possibly multivalued) map G, : R* x L?(Q2) — P(L*(Q)) by
G, (t,up) = {u(t) : u € K;' and u(0) = ug}.

With respect to the axiomatic properties (K1) — (K4) given above, we observe that obviously (K1) is
true, and (K2) can be proved easily using equality (19). Therefore, G, is a multivalued semiflow by the
results of the previous section. In this case we are not able to prove (K3), so G, could be non-strict.
Further we will prove that (K4) holds true.

Lemma 29 Let us assume (5)-(7), (17) and (60). Additionally, assume one of the following assumptions:
1. (11) and (83) hold;
2. (12) is true.

Given a sequence {u"} C K,& such that u™(0) — ug weakly in L?(SY), there exists a subsequence of
{u"} (relabeled the same) and u € K.*, satisfying u(0) = ug, such that

u"(t) — u(t) strongly in HY () Vt > 0.

Proof. We take an arbitrary 7' > 0. Arguing as in the proof of Theorem 9 we obtain the existence of a
subsequence of 4™ such that
{u"} is bounded in L>(0,T; L*(Q2)),
{u"} is bounded in LP(0, T LP(2)), (86)
{f(u"™)} is bounded in L?(0,T; LY(Q2)).
The only difference is that we obtain inequality (26) in an arbitrary interval [, T] and then pass to the
limit as € — 0 (see the proof of Proposition 15).
d n
Since % € L*(e,T; L*(Q)), for any ¢ > 0, we have that v € C((0,77], H} (Q)) and we know that
(81), (85) are true. Therefore, arguing as in the proofs of Theorems 9 and 12 and using (84) and (45)
there exists u € L (e, T; L*(Q)) N L%(0,T; H}(2)) and a subsequence {u"}, relabelled the same, such
that
U, = u in L0, T; L*(2))
Uy, = uin L®(e, T; HL())
u, — win L2(0,T; HL())
un, — w in LP(0,T; LP(§2))
u, — u in L?(g,T; D(A)), (87)
du du
— =~ — in L*(e, T; L*(Q2
e S 126, T 12(9)
fun) = f(u) in L0, T; LU(92)),
flun) = f(u) in L?(e, T; L* () ,
a(llunlF) Aun — a(llullF;) Au in L2 (e, T; L*(9)).

In view of (87), the Aubin-Lions Compactness Lemma gives
u, — uin L2(g,T; Hy (Q)). (88)

Since the sequence {u™} is equicontinuous in L?(2) on [¢,T] and bounded in C([e,T], H}(Q2)), by the
compact embedding H}(Q) C L?(Q) and the Ascoli-Arzela theorem, a subsequence fulfills

un — u in C([E,T],L2(0)>7

u(t) — u(t) in HY(Q) vt e T).
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By a similar argument as in the proof of Theorem 9 we establish that u € K&, u (0) = ug.
Finally, we shall prove that u™(t) — u(t) in H}(Q) for all t € [¢,T).
Multiplying (3) by u} and using (36), (81), and (85) we obtain

1 || du™]? d (1 ) 1 ,
I | B | = n L — n <! L
9 ‘ at ||, + <2A(u ()17 /QJ-'(u (t))dm) <3 Ibllfe =D
Thus,
A(lle"@®)17) /]—‘ )dx < A||“()||H1 /JT n(s))dz 4 Dt —5), t> 53 &> 0.

The same inequality is valid for the limit function u(-). We observe that the map y — [, F(y (z))dz is
continuous in the topology of H} (£2), which follows easily from HO (Q) C L7 (92) and (10) using Lebesgue’s
theorem. Hence, the functions J,(t) = SA([lu(t — JoF ))dx — Dt, J(t) = 3A(Ju(@®)||%:) —
0

Jo F(u(t))dz — Dt are continuous and non—lncreasmg in [e, T] Moreover, from (88) we deduce that
Jn(t ) — J( ) for a.e. t € (¢,T). Take € < t,,, < T such that t,, — T and J,,(¢,,) — J(¢,) for all m. Then

In(T) = J(T) < Jn(tm) = J(T) < [Jn(tm) = I (tm)| + [ (tm) — J(T)].
For any § > 0 there exist m(d) and N(m(d)) such that J*(T)— J(T) < ¢ if n > N. Then limsup J,(T) <

J(T), so lim sup ||Un(T)H12q§ < lu(T)|I3, 1 (see the explanation below). As u™(T') — u(T) weakly in H}(Q)

implies lim inf ||u”(T)H§{é > ||u(T) we obtain

”Hl’
(D)2 = eI,
so that u™(T) — u(T) strongly in H}(Q).

In order to finish the proof rigorously, we have to justify that limsup J,(T) < J(T) implies the
inequality limsup ||u™(T)[|%,, < [|u(T)|3,,. First, we observe that by (10) we have
0 0

F(uy (T,x))dx
Q

<C | (14 |un (T, 2)P) da
Q

so the boundedness of uy, (T') in L (Q2) implies that — [, F(uy, (T, z))dz < oo. Also, (9) gives —F (un (T, x)) >
—K, so by Fatou’s lemma we obtain

lim inf < /}'un Tx))d:c) _/liminf( F(up (T,x))) de

/.7: (T, x))

where we have used that F(u, (T,z) — F(u(T,x)) for a.a. x € Q. By contradiction let us assume that
lim sup ||uy, (T)HH(} > ||lu (T)|]. Then using the continuity of the function A (s) we have

imsup (3 (||u"< M) = [ Fun (7000 )

[l ()13,
> lim sup — 5 / a (s)ds + liminf <—/ F(un, (T,x))dx)
0 Q

lim sup [|u™ (1) |17,
1 y
> f/ a(s)ds — / Fluy (T,x))dz
0 Q

|z,
> f/ a(s)ds — / Flun (T, x))dz,
2.Jo Q

which is a contradiction with limsup J,(T) < J(T). =
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Corollary 30 Assume the conditions of Lemma 29. Then the set K& satisfies condition (K4).

Proposition 31 Assume the conditions of Lemma 29. The multivalued semiflow G, is upper semicon-
tinuous for all t > 0, that is, for any neighborhood O(G,(t,ug)) in L*(Q) there exists § > 0 such that if
lluo — vol| < 9, then G..(t,vo) C O. Also, it has compact values.

Proof. We argue by contradiction. Assume that there exists t > 0,uq € L*(Q), a neighbourhood
O(G,(t,up)) and a sequence {y,} which fulfills that each y,, € G,(t, uf}), where u} converges strongly to
up in L*(Q), and y,, ¢ O(G,(t,u,)) for all n € N. Since y,, € G,.(¢,u}) for all n, there exists u" € K,I,
u™ (0) = uy, such that y, = u™(t). Now, since {uf} is a convergent sequence of initial data, making
use of Lemma 29 there exists a subsequence of {u"} which converges to a function v € K. Hence,
Yn — Yy € Gp(t,up). This is a contradiction because y,, ¢ O(G,(t,up)) for any n € N. =

Proposition 32 Assume the conditions of Lemma 29. Then there exists an absorbing set By for G,
which is compact in H} () and LP ().

Proof. Reasoning as in Proposition 15, we obtain an absorbing set By in L? ().

d
Let K > 0 be such that ||y|| < K for all y € By. Since d—? € L (e,T;L*(Q)) and (85) holds, we are
allowed to multiply (3) by wu¢, use (81) and argue as in (52)-(55) to obtain the existence of a constant C

such that
lu (D) 7 + e (I < CQ+ [u(0)]|72), (89)

for any regular solution u (-) with initial condition w (0).
For any ug € L? () with ||ug|;. < R and any u € K, such that u (0) = uo, the semiflow property
G.(t+1,ug) C G-(1,G(t,up)) and G, (t,up) C By, if t > to (R), imply that

(¢ + 1) 7 + llu @+ D7, < O+ E?) ¥t > to (R).

Then there exists M > 0 such that the closed ball By in Hg () centered at 0 with radius M is absorbing
for G,.

By Lemma 29 the set By = G,.(1, Byy) is an absorbing set which is compact in H} (€2). The embedding
H} () € LP(Q) implies that it is compact in LP (Q) as well. =

Theorem 33 Assume the conditions of Lemma 29. Then the multivalued semiflow G, possesses a global
compact attractor A,.. Moreover, for any set B bounded in L*()) we have

distpy (G (t, B), Ar) = 0 ast— oo. (90)
Also A, is compact in H}(Q) and LP (Q2).

Proof. From Propositions 31 and 32 we deduce that the multivalued semiflow G, is upper semicontinuous

with closed values and the existence of an absorbing which is compact in H} () and L? (Q). Therefore,

by Theorem 28 the existence of the global attractor and its compactness in Hj (Q) and L? () follow.
The proof of (90) is analogous to that in Theorem 29 in [21]. m

The set of all complete trajectories of K,& (see Definition 21) will be denoted by F,.. Moreover, we
write K, as the set of all complete trajectories which are bounded in L?(2), and K! as the ones bounded
in H}(Q).

Lemma 34 Assume the conditions of Lemma 29. Then the sets defined above coincide, that is, K, = KL.

Proof. Let v(:) € K,. Then there is C such that ||y (¢)| ;. < C for any t € R. Let u, (-) =~v(-+7)
d
for any 7, which is a regular solution. Since di; € L*(e,T; L*(Q)), for any € > 0, the equality (81) holds

true. Also, (85) is satisfied. Therefore, we can multiply the equation in (3) by u; and apply again similar
arguments as in Theorem 12 to deduce that

Ky (D) L+ [uO)lF) |

2
e+ 1)l < -

(T) forany 0 <r < T. (91)
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Denote B., = Uery(t). Therefore,
B, C G.(1,B,)
and (91) implies that B, is bounded in H}(£2), so v(-) € K.

The other inclusion is obvious. m

In view of Corollary 30 and Theorem 27, the global attractor is characterized in terms of bounded
complete trajectories:

A ={37(0) :7() € Ko} = {5(0) :9() € KJ}
S U CORRORS ST YICTORRIORS o3 %2)

teR teR

The set R+ was defined in the previous section as the set of fixed points of K", which means

that z € R+ if the function u (-) defined by u (t) = 2, for all ¢ > 0, belongs to K,. This set can be
characterized as follows.

Lemma 35 Assume the conditions of Lemma 29. Let R be the set of z € H? () N H} () such that
—a(||z||?{é)Az = f(z) +hin L*(Q). (93)
Then Rp+ =R

du
Proof. If z € Ry+, then u(t) = 2 € K,I. Thus, u(-) satisfies (19) and — g
(93) is satisfied.

d
Let z € R. Then the map u (t) = z satisfies (93) for any ¢ > 0 and di: =01in L?(0,T;L?(Q)), so
(19) holds true. m

=0in L?(0,T; L*(Q2)), so

The following result is proved exactly as Theorem 18.

Theorem 36 Assume the conditions of Lemma 29. Then the global attractor A is bounded in L>(Q),
provided that h € L>=().

We are now ready to obtain the characterization of the global attractor.
Theorem 37 Assume the conditions of Lemma 29. Then it holds that

A = M (R) = MZ(R),

r

where
M;(R) ={z: () € K;, ¥(0) = 2z, dist r2(0)(y(t),R) — 0, t — 400}, (94)

M (R) = {z:39() €Fy, 7(0) = 2, dist 12o)(7(t).R) = 0, £ — —o0}. (95)

Remark 38 In the definition of MM*(R) we can replace F, by K,.. Also, as the global attractor A is
compact in H} (), in the definitions of M:(R) and M"(R), it is equivalent to write Hg (Q) instead of
L? ().

Proof. We consider the function £ : 4, — R

1
B) = 54l — [ Flo@)de— [ by (@) da, (96)
where A(r) = [; af ds We observe that E(y) is continuous in H{ (Q). Indeed, the maps y +—
LA(|ly|12 0) y — [oh(x)y(x)dx are obviously continuous in Hj (Q2). On the other hand, both con-

ditions (12) and (83) imply that H} (Q) C LP (Q2), so making use of the Lebesgue theorem the continuity
of y — [, F(y (x))dz follows as well.
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d
Since d—ltt € L? (e, T;L*(Q)) and (85) holds for any u € K;5 and 0 < € < T, we obtain the energy
equality

/ |5 u(r) adr + Bu(t) = B(u(s) for all £ > 5> 0. (97)

Hence, E (u(t)) is non-increasing and, by (6) and (9), bounded from below. Thus, E(u(t)) — I, as
t — +o0, for some [ € R.

Let z € A, and v (0) = z, where v € K,.. We reason by contradiction, so let suppose that there exists
e > 0 and a sequence v(t,), t, — +00, such that

dist L2(Q) (v(tn),%) > e.

In view of Theorem 33, A, is compact in H}(Q), so we can take a converging subsequence (relabeled the
same) such that v(t,,) — y in H}(Q), where t,, — +00. Since the function E : H}(2) — R is continuous,
it follows that E(y) = I. We obtain a contradiction by proving that y € R. In view of Lemma 29, there
exists v € K, and a subsequence v, (-) = v(- + t,,) such that v(0) = y and v, (t) — v(t) = z in H ()
for ¢ > 0. Thus, E(v,(t)) — E(z) implies that F(z) = I. Also, v(-) satisfies the energy equality for all
0 < s <t so that

l+/0 |vr||22dr = E(2) +/0 |ve||22dr = E(v(0)) = E(y) = 1.

d
Therefore, d—:(t) = 0 for a.a. t, and then by Lemma 35 we have y € Rp+r=NR. As a consequence,

A, C M3 (R). The converse inclusion follows from (92).

For the second equality we observe that for any v € F, the energy equality (97) is satisfied for all
—0 <5<t Let z €A, and let v € K, = K! (cf. Lemma 34) be such that v(0) = z. Since the second
term of the energy function is bounded from above by (9), E(y(t)) — [, as t — —o0, for some [ € R. We
reason as before, so let suppose that there exists € > 0 and a sequence y(—t,), t,, — 00, such that

dist L2(Q) (’7(—75”),%) > g,

and we have that v(—t,) — y in H}(Q), E(y) = I. Moreover, for a fixed ¢ > 0, there exists v € K, and a
subsequence of v, () = v(- — t,,) (relabeled the same) such that v(0) = y and v, (t) — v(t) = 2z in H}(Q).
Therefore, E(v,(t)) — E(z) implies that E(z) = [ and reasoning as before we get a contradiction since
it follows that y € M. Hence, A, C M¥(R) and the converse inclusion follows from (92). m

We can improve the regularity of the global attractor of the semigroup 7, of Section 3.1.1 and obtain
its characterization

Lemma 39 Let the conditions of Theorem 17 hold. Then the global attractor A, of the semigroup T, is
compact in H} (), bounded in LP (Q) and the convergence takes place in the topology of H} (), that is,

distyy o) (T (t, B), A) — 0, ast — +oo,
for any set B bounded in L* (Q).

Proof. The estimates of Lemma 29 can be justified for T;. via Galerkin approximations, so in this case
we do not need to impose assumption (83) in order to use (85). Thus, the proof follows the same lines as
in Proposition 32 and Theorem 33. m

Proposition 40 Let the conditions of Theorem 17 hold. Also, assume one of the following conditions:

1. he L>®(Q);

2. p< 2 ifn >3
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Then the global attractor A, can be characterized as follows:
Ap = M!(R) = M2 (R),
where M3(R), M¥(R) are defined in (94)-(95).

Proof. We recall that a function £ : A — R is a Lyapunov functional if E is continuous (with respect to
the topology of H{ (Q)), for any ug € A the map t — E(T,(t,up)) is non-increasing and E(T}(7,uq)) =
E(ugp), for some 7 > 0, implies that « (-) is a fixed point. We estate that the function F given in (96) is
a Lyapunov functional for the semigroup T;..

We prove that F (y) is continuous. First, the maps y — %A(||y||§{3), y — [oh(x)y(z)de are

obviously continuous in H{ (Q). Second, if h € L (Q), taking into account that A is bounded in L (Q)

by Theorem 18, it follows that
y1(x)
/ / f(s)dsdx
Q Jy2(x)

so y — [o, F(y(z))dz is continuous as well. In the case of the second condition, this result follows from
the embedding H} () € LP (Q2) and the Lebesgue theorem.
Multiplying the equation in (3) by u; we obtain the energy inequality

‘Afwo—f@Mw

SAQM@—M@WS@M—Mm

/ ”diru(r)HQder + E(u(t)) < E(u(s)), forallt>s,

if u(-) is a bounded complete trajectory of T,.. This calculation is rigorous when h € L*°(Q) as the
boundedness of the solutions in L* (R; L>°(€2)) implies by regularization that (85) is true. Under the
second condition, the calculations are formal but can be justified via Galerkin approximations. Hence,

d
E(u(t)) is non-increasing as a function of ¢. Also, if E(u(7)) = E (ug), then ”ditt (t)]|3. = 0 for a.a.

0 <t < T, sowu must be a fixed point.
The result follows then from [3, p.160]. m

3.2 Strong solutions

We split this part into two cases.

3.2.1 Attractor in the phase space H{ (Q)

If we assume conditions (5)-(7), (60) and that either p satisfies (12) or that (11) is satisfied, then we know
by Theorems 10 and 11 that for any ug € H} () N LP (2) there exists at least one strong solution u (-).
In the first case, H} () C LP (Q) implies that H{ (Q) N LP (Q) = H} (). This is also true in the
second case if we assume additionally that (83) holds true. Under such assumptions we define then the
set
R = K} :={u() : u is a strong solution of (3) with u (0) € HJ ()}.

We define the (possibly multivalued) map Gy : RT x H{ (Q) — P(H{ (Q)) by
Gs(t,up) = {u(t) : u € K and u(0) = ug}.

With respect to the axiomatic properties (K1) — (K4) given above, property (K1) is obviously true, and
(K2) — (K3) can be proved easily using equality (19). Therefore, G is a strict multivalued semiflow by
the results of Section 3.1.2.

We shall obtain a similar result as in Lemma 29.

Lemma 41 Let assume conditions (5)-(7), (60). Additionally, assume one of the following assumptions:

1. (11) and (83) hold;
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2. (12) is true.

Given a sequence {u"} C KF such that u™(0) — ug weakly in HE (L), there exists a subsequence of
{u"} (relabeled the same) and u € K}, satisfying u(0) = ug, such that

u™(t) — u(t) in Hy(Q), Yt > 0.

n

d
Proof. Since % € L*(0,T;L*(2)) and (85) hold, we can use (81) and multiplying (3) by u; and

integrating between s and ¢ we obtain
tod
/ 5 ) [3adr + Bu(t) = Bu(s)) for all £ > 5 >0,
where E was defined in (96). Therefore, by (6) and (9) we have that
t d 2 m 2 ~ P 1 2 ~ P 2
| I ulr)zadr + - llu®)y + afu®)llz, < 5 AUNwO)z,) + a2llw(0)z, + Killu (0)ll2 + K2 (98)

holds for all ¢ > 0.
In the first case, multiplying by —Auw, integrating over (0,7") and using (98) it follows that

1 m [T T 1
Il + 5 [ 1AulEads <n [ u)lfyds + 5IuO)y + Ko < Ku(@). (99)

for all T > 0. In the second case, combining (98) with (45) the boundedness of f (u™) in L? (0,7’ L* (2))
follows for any 1" > 0. Hence, the equality

du’™ n
a(Jlullfy) du =" = f (") = h

and (6) imply that u™ is bounded in L2 (0,T; D(A)).
Thus, the sequence {u"} is bounded in L*°(0,T; H3(Q2))NL?(0,T; D(A)) and dg—:, f (u™) are bounded

in L2(0,T; L*(Q)), for all T > 0. Therefore, there is u such that

u™ S in L0, T; HE (),

u" — u in L?(0,T; D(A)),

ul — uy in L?(0,T; L*(2)), .
Arguing in a similar way as in Theorem 9 we have

u, — u in L*(0,T; Hy(Q)),

up(t,x) — u(t,z) a.e. on (0,T) x Q,
F ") = f(w) in L*(0,T; L*(©)),
a([[unllz) Aun — a(llullFy) A in L2(0,T; L*(2)).

Hence, we can pass to the limit and obtain that u € K}. Following the same lines of Theorem 10 we
check that u (0) = uo.
Moreover, arguing as in Lemma 29 we obtain

u™(t) — u(t) in Hy(Q) for all t > 0.
[

Corollary 42 Assume the conditions of Lemma 41. Then the set K satisfies condition (K4).
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Using Lemma 41 and reasoning as before the following result holds.

Proposition 43 Assume the conditions of Lemma 41. Then the map Gy (t,-) is upper semicontinuous
for all t > 0 with compact values.

Proposition 44 Assume the conditions of Lemma 41 and (17). Then there exists an absorbing set By
for G, which is compact in Hg (Q) and LP (Q).

Proof. The proof follows the same lines of that in Proposition 32 but using Lemma 41. =

From these results and Theorem 28 we obtain the existence of the global attractor.

Theorem 45 Assume the conditions of Lemma 41 and (17). Then the multivalued semiflow G possesses
a global compact invariant attractor As, which is compact in LP ().

Lemma 46 Assume the conditions of Lemma 41 and (17). Then As = A,, where A, is the global
attractor in Theorem 33.

Proof. Since Gy (t,up) C Gy (t,ug) for all ug € H} (), it is clear that A, is a compact attracting set.
Hence, the minimality of the global attractor gives A, C A,.

Let z € A,. Since z =~ (0), where v € K}, and 7 |(5 ) is a strong solution of (3) for any s € R, we
get that z € Gs(tn, v (—ty)) for t,, — +oo. Hence,

dist (z, Ag) < dist (Gs(tn,v(—tn)), As) — 0 as n — oo,
soz€eA;,. m

The set of all complete trajectories of K (see Definition 21) will be denoted by Fs. Let K be the
set of all complete trajectories which are bounded in H}(Q).
In view of Theorem 27, the global attractor is characterized in terms of bounded complete trajectories:

As = {10):9() e Ko} = 111 :7() e Ko} (100)

In the same way as in Lemma 35 we obtain that R+ = R.
Reasoning as in Theorem 18 we obtain the following Tesult.

Theorem 47 Assume the conditions of Lemma 41 and (17). Then the global attractor As is bounded in
L>(Q), provided that h € L (Q).

Following the same procedure of Theorem 37 we can prove an analogous characterization of the global
attractor.

Theorem 48 Assume the conditions of Lemma 41 and (17).Then it holds that
As = M (R) = M (R),
where
MZ(R) ={z: () €K, 7(0) =z, dist g(a(y(t),R) =0, t — +oo}, (101)
MI(R) ={z:3() € Fs, v(0) =2, distgia(y(t),R) =0, t - —oo}. (102)
Remark 49 In the definition of M*(R) we can replace F,. by K.

Let us consider now the particular situation when G, is single-valued semigroup. Under the conditions
(5)-(7), (11), (60), (83), if we assume additionally that (14) is satisfied, then by Theorem 14 for any
up € H} (Q) there exists a unique strong solution wu (). Then we can define the following semigroup
T, :RT x HY () — H} () :

To(t, uo) = ult),
where u (+) is the unique strong solution to (3). We recall also that u € C([0,T], H (Q)) for any T > 0.
Also, by Lemma 41 if u?} — ug weakly in Hg (Q), then Ti(¢,ul) — T (t,up) in Hg (Q) for all ¢ > 0.
Since Ts = G, by Theorems 45, 47, 48 and Lemma 46 we obtain the following results.
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Theorem 50 Assume the conditions (5)-(7), (11), (17), (60), (83) and (14). Then the semigroup T,
possesses a global invariant attractor As, which is compact in HE () and LP (Q2).

Lemma 51 Under the conditions of Theorem 50, A; = A,., where A, is the attractor of Theorem 17.

Theorem 52 Assume the conditions of Theorem 50. Then the global attractor A, is bounded in L ()
provided that h € L>=(2).

As before, we denote by R the set of fixed points of T. Also, the global attractor is the union of all
bounded complete trajectories

As = {6 (0) : ¢ is a bounded complete trajectory of T}.

Theorem 53 Assume the conditions of Theorem 50. Then the global attractor As can be characterized
as follows
As = ME(R) = M (R),

where the sets M¥*(R), MZ(R) are defined in (101)-(102).
In this case we can obtain additionally that the attractor is bounded in H? (Q).

Proposition 54 Assume the conditions of Theorem 50 and also that (15) holds true. Then As is bounded
in H? ().

Proof. The proof follows the same lines as in Proposition 19, so we omit it. m

3.2.2 Attractor in the phase space H} (2) N L? (Q2)

We consider the metric space X = Hg (Q) N LP (Q) endowed with the induced topology of the space
If we assume conditions (5)-(7), (11), (14) and (60), then by Theorems 10 and 14 for any ug €
H} () N LP () there exists a unique strong solution u (-). Then we can define the following semigroup
T, Rt x X - X :
Ts(t,uo) = u(t),
where u (+) is the unique strong solution to (3). We recall also that u € C([0, T, H} (92))NC,, ([0,T], LP (2))
for any T > 0.

Lemma 55 Assume conditions (5)-(7), (11), (14) and (60). If ul — ug weakly in H} () NLP (), then
Ts(t,up) — Ts(t,ug) strongly in H} (Q) and weakly in LP (Q) for any t > 0.

Proof. Repeating the same proof of Lemma 41 we obtain that Ty (¢, u?) — Ts(t,uo) strongly in Hg (Q)
for all ¢ > 0. We observe that in this case the estimates are justified via Galerkin approximations, so we
do not need condition (83) in order to provide property (85).

Finally, by the Ascoli-Arzela theorem we deduce

u" — w in C([0, T, L*(Q))
and combining this with (98) we infer that
u" (t) = wu(t) in LP (Q) V> 0.
|

Proposition 56 Assume the conditions of Lemma 55 and (17). Then there exists an absorbing set By
for T, which is compact in Hj (Q) and bounded LP (Q2).

Proof. Following the same lines of that in Proposition 32 (and justifying the estimates via Galerkin
approximations), we obtain that there exists M > 0 such that the closed ball By in Hg (Q) N LP (Q)
centered at 0 with radius M is absorbing for T;. By Lemma 55 the set By = Ts(1, Bys) is an absorbing
set which is compact in H{ (Q) and bounded in L? (). m
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Theorem 57 We assume the conditions of Lemma 55 and (17). Then the semigroup Ts possesses a
global attractor As, which is compact in X and bounded in LP ().

Proof. We cannot apply directly the general theory of attractors for semigroup because we do not know
whether the semigroup T is continuous with respect to the initial datum in X.
We state that

As =w (By) ={y: 3t, — +00, yn € Ts (tn, B1) such that y, — y in X}

is a global compact attractor. The fact that set w (B7) is non-empty, compact and the minimal closed
set attracting Bj can be proved in a standard way (see for example Theorem 10.5 in [30]). Since B is
absorbing, w (B;) attracts any bounded set B. As w (By) C By, As is bounded in L? (2).

We need to prove that it is invariant.

First, we prove that it is negatively invariant. Let y € Ay and ¢t > 0 be arbitrary. We take a
sequence Yy, € T (t,, B1) such that y,, — y, t, — +o00. Since T (t,, B1) = Ts(t, Ts(t, —t, B1)), there are
Zp € Ty(t, —t, By) such that y, = Ts(t,z,). As for n large Ts(t, — t,B1) C By, the sequence {z,} is
bounded in LP () and relatively compact in H¢ (). Hence, up to a subsequence z,, — = € A, weakly
in LP (Q) and strongly in H} (2). We deduce by Lemma 55 that T (t,2,) — Ts(t,x) weakly in L? (Q)
and strongly in Hg (Q). Thus, y = Ts(t,x) C T (¢, As) -

Second, we prove that it is positively invariant. As A; = Ts(7, As) for any 7 > 0, this follows from

distx (Ts (t, As) , As) = distx (Ts (¢, Ts(1, As)) , As) = distx (Ts (t + 7, As) , As) e 0.
|
Lemma 58 Under the conditions of Theorem 57, A; = A,., where A, is the attractor of Theorem 17.
Proof. Since T, (t,ug) = Ts (t,ug) for any up € X, we have

distre (As, A) = distre (To(t, As), A.) = distpe (T-(t, As), A.) — 0,

so As C A,. In the same way,

distx (A, As) = distx (T, (t, Ar), As) = distx (Ts(t, Ar), As) — 0,
and then A, C A;,. =

The following two theorems are proved in the same way as Theorem 18 and Proposition 40

Theorem 59 Assume the conditions of Theorem 57. Then the global attractor As is bounded in L ()
provided that h € L>(12).

As before, we denote by R the set of fixed points of T. Also, the global attractor is the union of all
bounded complete trajectories

As ={¢(0) : ¢ is a bounded complete trajectory of Ts}.
Theorem 60 We assume the conditions of Theorem 57 and one of the following assumptions:
1. h € L™ (Q);
2. p< % if n > 3.
Then the global attractor As can be characterized as follows
Ay = MY(R) = MX(R),

where the sets M¥*(R), MS(R) are defined in (101)-(102).

S
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We obtain additionally that the attractor is bounded in H? (£2).

Proposition 61 Assume the conditions of Theorem 57 and also that (15) is satisfied. Then A is
bounded in H? (Q).

Proof. The proof follows the same lines as in Proposition 19, so we omit it. m
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