Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/36863
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorRuiz Atencia, Javier-
dc.contributor.authorLopez Granado, Otoniel-
dc.contributor.authorPérez Malumbres, Manuel-
dc.contributor.authorMartínez-Rach, Miguel-
dc.contributor.otherDepartamentos de la UMH::Ingeniería de Computadoreses_ES
dc.date.accessioned2025-07-14T12:04:57Z-
dc.date.available2025-07-14T12:04:57Z-
dc.date.created2025-
dc.identifier.citationThe Journal of Supercomputing (2025) 81:464es_ES
dc.identifier.issn0920-8542-
dc.identifier.urihttps://hdl.handle.net/11000/36863-
dc.description.abstractThis paper introduces a dual hybrid neural network model combining convolu- tional neural networks (CNNs) and artificial neural networks (ANNs) to optimize the quantization parameter (QP) for both 64 × 64 and 32 × 32 blocks in the versatile video coding (VVC) standard, enhancing video quality and compression efficiency. The model employs CNNs for spatial feature extraction and ANNs for structured data handling, addressing the limitations of current heuristic and just noticeable distortion (JND)-based methods. A dataset of luminance channel image blocks, encoded with various QP values, is generated and preprocessed, and the dual hybrid network structure is designed with convolutional and dense layers. The QP optimi- zation is applied at two levels: the 64 × 64 model provides a global QP offset, while the 32 × 32 model refines the QP for further partitioned blocks. Performance evalu- ations using model error metrics like mean squared error (MSE), root mean squared error (RMSE), mean absolute error (MAE), as well as perceptual metrics like weighted PSNR (WPSNR), MS-SSIM, PSNR-HVS-M, and VMAF, demonstrate the model’s effectiveness. While our approach performs competitively with state-of-the- art algorithms, it significantly outperforms in VMAF, the most advanced and widely adopted perceptual quality metric. Furthermore, the dual-model approach yields bet- ter results at lower resolutions, whereas the single-model approach is more effective at higher resolutions. These results highlight the adaptability of the proposed mod- els, offering improvements in both compression efficiency and perceptual quality, making them highly suitable for practical applications in modern video coding.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent21es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectHybrid networkes_ES
dc.subjectCNNes_ES
dc.subjectPerceptuales_ES
dc.subjectQPes_ES
dc.subjectVVCes_ES
dc.subjectAdaptiveQPes_ES
dc.subjectQPAes_ES
dc.subjectHVSes_ES
dc.subject.otherCDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnologíaes_ES
dc.titlePerceptual QP optimization for VVC with dual hybrid neural networkses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1007/s11227-025-06954-zes_ES
Aparece en las colecciones:
Artículos Ingeniería de computadores


Vista previa

Ver/Abrir:
 2025-Supercomputing-Perceptual QP optimization for VVC with dual hybrid neural networks.pdf

1,21 MB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.