Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/36843

Static Early Fusion Techniques for Visible and Thermal Images to Enhance Convolutional Neural Network Detection: A Performance Analysis


Vista previa

Ver/Abrir:
 remotesensing-17-01060-v2.pdf

28,98 MB
Adobe PDF
Compartir:
Título :
Static Early Fusion Techniques for Visible and Thermal Images to Enhance Convolutional Neural Network Detection: A Performance Analysis
Autor :
Heredia-Aguado, Enrique
Cabrera, Juan José
Jiménez, Luis Miguel
Valiente, David
Gil, Arturo
Editor :
MDPI
Departamento:
Departamentos de la UMH::Ingeniería de Sistemas y Automática
Fecha de publicación:
2025
URI :
https://hdl.handle.net/11000/36843
Resumen :
This paper presents a comparison of different image fusion methods for matching visible-spectrum images with thermal-spectrum (far-infrared) images, aimed at enhancing person detection using convolutional neural networks (CNNs). While object detection with RGB images is a well-developed area, it is still greatly limited by lighting conditions. This limitation poses a significant challenge in image detection playing a larger role in everyday technology, where illumination cannot always be controlled. Far-infrared images (which are partially invariant to lighting conditions) can serve as a valuable complement to RGB images in environments where illumination cannot be controlled and robust object detection is needed. In this work, various early and middle fusion techniques are presented and compared using different multispectral datasets, with the aim of addressing these limitations and improving detection performance.
Palabras clave/Materias:
thermal images
person detection
multispectral image fusion
deep learning
computer vision
Área de conocimiento :
CDU: Ciencias aplicadas: Ingeniería. Tecnología
Tipo de documento :
info:eu-repo/semantics/article
Derechos de acceso:
info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
https://doi.org/10.3390/rs17061060
Publicado en:
Remote Sens. 2025, 17, 1060
Aparece en las colecciones:
Artículos - Ingeniería de Sistemas y Automática



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.