Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/36843
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorHeredia-Aguado, Enrique-
dc.contributor.authorCabrera, Juan José-
dc.contributor.authorJiménez, Luis Miguel-
dc.contributor.authorValiente, David-
dc.contributor.authorGil, Arturo-
dc.contributor.otherDepartamentos de la UMH::Ingeniería de Sistemas y Automáticaes_ES
dc.date.accessioned2025-07-11T11:57:12Z-
dc.date.available2025-07-11T11:57:12Z-
dc.date.created2025-
dc.identifier.citationRemote Sens. 2025, 17, 1060es_ES
dc.identifier.issn2072-4292-
dc.identifier.urihttps://hdl.handle.net/11000/36843-
dc.description.abstractThis paper presents a comparison of different image fusion methods for matching visible-spectrum images with thermal-spectrum (far-infrared) images, aimed at enhancing person detection using convolutional neural networks (CNNs). While object detection with RGB images is a well-developed area, it is still greatly limited by lighting conditions. This limitation poses a significant challenge in image detection playing a larger role in everyday technology, where illumination cannot always be controlled. Far-infrared images (which are partially invariant to lighting conditions) can serve as a valuable complement to RGB images in environments where illumination cannot be controlled and robust object detection is needed. In this work, various early and middle fusion techniques are presented and compared using different multispectral datasets, with the aim of addressing these limitations and improving detection performance.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent29es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectthermal imageses_ES
dc.subjectperson detectiones_ES
dc.subjectmultispectral image fusiones_ES
dc.subjectdeep learninges_ES
dc.subjectcomputer visiones_ES
dc.subject.otherCDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnologíaes_ES
dc.titleStatic Early Fusion Techniques for Visible and Thermal Images to Enhance Convolutional Neural Network Detection: A Performance Analysises_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.3390/rs17061060es_ES
Aparece en las colecciones:
Artículos - Ingeniería de Sistemas y Automática


Vista previa

Ver/Abrir:
 remotesensing-17-01060-v2.pdf

28,98 MB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.