Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/11000/36843
Static Early Fusion Techniques for Visible and Thermal Images
to Enhance Convolutional Neural Network Detection:
A Performance Analysis
Título : Static Early Fusion Techniques for Visible and Thermal Images
to Enhance Convolutional Neural Network Detection:
A Performance Analysis |
Autor : Heredia-Aguado, Enrique Cabrera, Juan José Jiménez, Luis Miguel Valiente, David Gil, Arturo |
Editor : MDPI |
Departamento: Departamentos de la UMH::Ingeniería de Sistemas y Automática |
Fecha de publicación: 2025 |
URI : https://hdl.handle.net/11000/36843 |
Resumen :
This paper presents a comparison of different image fusion methods for matching
visible-spectrum images with thermal-spectrum (far-infrared) images, aimed at enhancing
person detection using convolutional neural networks (CNNs). While object detection
with RGB images is a well-developed area, it is still greatly limited by lighting conditions.
This limitation poses a significant challenge in image detection playing a larger role in
everyday technology, where illumination cannot always be controlled. Far-infrared images
(which are partially invariant to lighting conditions) can serve as a valuable complement to
RGB images in environments where illumination cannot be controlled and robust object
detection is needed. In this work, various early and middle fusion techniques are presented
and compared using different multispectral datasets, with the aim of addressing these
limitations and improving detection performance.
|
Palabras clave/Materias: thermal images person detection multispectral image fusion deep learning computer vision |
Área de conocimiento : CDU: Ciencias aplicadas: Ingeniería. Tecnología |
Tipo de documento : info:eu-repo/semantics/article |
Derechos de acceso: info:eu-repo/semantics/openAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
DOI : https://doi.org/10.3390/rs17061060 |
Publicado en: Remote Sens. 2025, 17, 1060 |
Aparece en las colecciones: Artículos - Ingeniería de Sistemas y Automática
|
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.