Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/36836
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorSanto López, Antonio-
dc.contributor.authorHeredia-Aguado, Enrique-
dc.contributor.authorViegas, Carlos-
dc.contributor.authorValiente, David-
dc.contributor.authorGil, Arturo-
dc.contributor.otherDepartamentos de la UMH::Ingeniería de Sistemas y Automáticaes_ES
dc.date.accessioned2025-07-11T09:42:34Z-
dc.date.available2025-07-11T09:42:34Z-
dc.date.created2025-04-16-
dc.identifier.citationTechnologies 2025, 13(4), 162es_ES
dc.identifier.issn2227-7080-
dc.identifier.urihttps://hdl.handle.net/11000/36836-
dc.description.abstractGround segmentation in LiDAR point clouds is a foundational capability for autonomous systems, enabling safe navigation in applications ranging from urban self-driving vehicles to planetary exploration rovers. Reliably distinguishing traversable surfaces in geometrically irregular or sensor-sparse environments remains a critical challenge. This paper introduces a hybrid framework that synergizes multi-resolution polar discretization with sparse convolutional neural networks (SCNNs) to address these challenges. The method hierarchically partitions point clouds into adaptive sectors, leveraging PCAderived geometric features and dynamic variance thresholds for robust terrain modeling, while a SCNN resolves ambiguities in data-sparse regions. Evaluated in structured (SemanticKITTI) and unstructured (Rellis-3D) environments, two different versions of the proposed method are studied, including a purely geometric method and a hybrid approach that exploits deep learning techniques. A comparison of the proposed method with its purely geometric version is made for the purpose of highlighting the strengths of each approach. The hybrid approach achieves state-of-the-art performance, attaining an F1-score of 95.4% in urban environments, surpassing the purely geometric (91.4%) and learningbased baselines. Conversely, in unstructured terrains, the geometric variant demonstrates superior metric balance (80.8% F1) compared to the hybrid method (75.8% F1), highlighting context-dependent trade-offs between precision and recall. The framework’s generalization is further validated on custom datasets (UMH-Gardens, Coimbra-Liv), showcasing robustness to sensor variations and environmental complexity. The code and datasets are openly available to facilitate reproducibilityes_ES
dc.formatapplication/pdfes_ES
dc.format.extent22es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectground segmentationes_ES
dc.subjectLiDAR point cloudses_ES
dc.subjectannotation procedurees_ES
dc.subjectautonomous navigationes_ES
dc.subjecttraversability estimationes_ES
dc.subject.otherCDU::62 - Ingenieria. Tecnologíaes_ES
dc.titleGround Segmentation for LiDAR Point Clouds in Structured and Unstructured Environments Using a Hybrid Neural–Geometric Approaches_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.3390/technologies13040162es_ES
Aparece en las colecciones:
Artículos - Ingeniería de Sistemas y Automática


Vista previa

Ver/Abrir:
 technologies-13-00162-v2.pdf

7,3 MB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.