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Abstract: Ground segmentation in LiDAR point clouds is a foundational capability for au-
tonomous systems, enabling safe navigation in applications ranging from urban self-driving
vehicles to planetary exploration rovers. Reliably distinguishing traversable surfaces in
geometrically irregular or sensor-sparse environments remains a critical challenge. This
paper introduces a hybrid framework that synergizes multi-resolution polar discretiza-
tion with sparse convolutional neural networks (SCNNs) to address these challenges.
The method hierarchically partitions point clouds into adaptive sectors, leveraging PCA-
derived geometric features and dynamic variance thresholds for robust terrain modeling,
while a SCNN resolves ambiguities in data-sparse regions. Evaluated in structured (Se-
manticKITTI) and unstructured (Rellis-3D) environments, two different versions of the
proposed method are studied, including a purely geometric method and a hybrid approach
that exploits deep learning techniques. A comparison of the proposed method with its
purely geometric version is made for the purpose of highlighting the strengths of each
approach. The hybrid approach achieves state-of-the-art performance, attaining an F1-score
of 95.4% in urban environments, surpassing the purely geometric (91.4%) and learning-
based baselines. Conversely, in unstructured terrains, the geometric variant demonstrates
superior metric balance (80.8% F1) compared to the hybrid method (75.8% F1), highlighting
context-dependent trade-offs between precision and recall. The framework’s generaliza-
tion is further validated on custom datasets (UMH-Gardens, Coimbra-Liv), showcasing
robustness to sensor variations and environmental complexity. The code and datasets are
openly available to facilitate reproducibility.

Keywords: ground segmentation; LiDAR point clouds; annotation procedure; autonomous
navigation; traversability estimation

1. Introduction
In an increasingly complex technological landscape, marked by substantial advances

in the field of artificial intelligence (AI) algorithms, the attainment of fully autonomous
navigation has emerged as a key challenge. This capability is regarded as a critical enabling
technology across a range of domains, including robotics and environmental monitoring.
In these domains, the interpretation of terrain through point cloud analysis serves as the
foundational element for the development of safe and adaptive navigation systems [1].
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Historically, the analysis of ground planes was approached through terrain analysis
algorithms based on heuristic methods. These pioneering techniques relied on geomet-
ric computations to model ground conditions [2–4]. However, such early frameworks
exhibited critical limitations, including limited adaptability to dynamic environments,
insufficient robustness under contextual variations, and an over-reliance on predefined
rule-based thresholds.

The exponential progress in computational power, sensor technology and AI algo-
rithms has revolutionized ground detection techniques. In this technological transition,
LiDAR-based sensing systems have become a fundamental component, offering distinct
advantages, including precise measurements, long-range detection capabilities, and resis-
tance to ambient light variations and electromagnetic interference. These developments
have given rise to a variety of methodologies for ground plane detection through spatial
environmental representations, including two-dimensional occupancy maps [5], digital
elevation models (DEMs) [6], and voxel-based 3D occupancy frameworks [7–9]. Ground
segmentation in point clouds, however, transcends these conventional approaches, serving
as a critical enabler for advanced applications such as road boundary extraction [10,11],
target tracking [12], and object detection [13,14].

The complexity of ground segmentation, a task requiring the precise separation of
traversable terrain from obstacles in dense and heterogeneous point clouds, coupled with
the significant challenges of generating and annotating large-scale datasets for robust
algorithm evaluation, forms the core motivation for this research. Current methods struggle
to adapt to dynamic environments where sensor noise and geometric irregularities degrade
performance, particularly in unstructured terrains. Furthermore, the manual annotation of
LiDAR data is still very time-consuming.

The present study proposes a novel LiDAR point cloud ground segmentation method
that combines the following two complementary approaches: an advanced geometric
analysis and AI techniques. The core innovation lies in a multi-resolution cylindrical space
discretization framework, explicitly designed to mitigate the usual sparsity of LiDAR point
clouds. This spatial partitioning strategy enables robust terrain characterization, effec-
tively addressing the limitations of conventional segmentation methods that struggle with
heterogeneous point distributions. As a complementary methodological component, we
introduce a sparse neural network based on TE-NeXt (Traversability Estimation ConvNeXt)
[15] that operates in regions where low point density hinders reliable geometric segmenta-
tion. This hybrid architecture leverages geometric features for structural coherence while
employing learned feature representations to resolve ambiguities in data-sparse zones,
thereby achieving comprehensive traversable-terrain separation across diverse environ-
mental conditions.

The integration of geometric analysis and AI techniques introduces a novel paradigm
to address the inherent challenges of 3D point cloud traversable terrain segmentation,
achieving superior performance in both structured and unstructured environments. In sum-
mary, the main contributions of this paper are as follows:

• A novel pipeline that maximizes geometric feature extraction while compensating for
information-scarce regions through TE-NeXt [15], enabling robust terrain modeling in
sparse point clouds.

• Rigorous benchmarking on structured (SemanticKITTI) and unstructured (Rellis-3D)
environments, preserving raw point cloud integrity by evaluating all scene elements
without algorithmic modifications or data preprocessing.

• Introduction of novel LiDAR domain adaptation datasets to validate model general-
ization across sensor configurations and environmental conditions, addressing critical
gaps in cross-sensor generalization for ground segmentation.
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The remaining sections of the paper are structured as follows: Section 2 outlines
the prevailing methodologies employed for addressing ground segmentation. Section 3
presents the proposed method in detail. Then, Section 4 presents the databases on which the
performance of the method has been evaluated. The subsequent section (Section 5) provides
a comparison of the results of the proposed method with the state of the art. In addition,
a qualitative evaluation is provided with data collected by the authors in two very different
contexts to validate the adaptation and applicability in real-world environments. Finally,
Section 6 presents the conclusions drawn from the study.

2. Related Work
This section introduces the most representative techniques in the context of ground

segmentation and traversability analysis. The state of the art has been divided into different
parts as follows: Section 2.1 describes probabilistic models for ground segmentation,
Section 2.2 provides a detailed exposition of methods based on geometric heuristics,
Section 2.3 offers a comprehensive introduction to methods employing visual data, and
ultimately, Section 2.4 offers a state-of-the-art overview of methods based on AI techniques.

2.1. Probabilistic Ground Segmentation Models

Probabilistic methods represent a sophisticated approach to terrain analysis, providing
a robust framework for dealing with uncertainty in spatial measurements captured by
sensors. Thus, Markov Random Fields (MRFs) [16] are considered as one of the main
probabilistic methods for the task of ground segmentation. Zhang et al. [17] developed a
multi-label MRF in polar coordinates, incorporating local smoothness constraints and slope
thresholds to filter obstacles. On the other hand, Huang et al. [18] employed an MRF that
operates on local features such as height and gradients between adjacent points.

Among the predominant probabilistic approaches for ground segmentation, Gaus-
sian Process Regression (GPR) [19] is distinguished by its unique approach to deriving
probabilistic estimations through continuous surface modeling, compared to discrete grid-
based methods. Chen et al. [20] introduced sparse covariance functions to GPR-based
pipelines, improving computational efficiency while preserving discriminative power for
the identification of ground points in sparse and noisy point clouds.

Following the probabilistic methodology, Del Pino et al. [21] used a probabilistic graph-
based model to represent and analyze the ground geometry. It applies stochastic estimation
techniques to iteratively update the ground plane parameters (height and slope).

2.2. Geometric-Based Ground Segmentation Methods

In the context of ground segmentation for LiDAR point clouds, geometric approaches
have emerged as the predominant strategy, primarily due to their real-time processing capa-
bilities. These methods excel in transforming complex 3D spatial data into computationally
efficient 2.5D representations, thereby facilitating precise terrain surface identification in
dynamic and unstructured environments. However, a critical limitation of this approach
is the frequent occurrence of under-segmentation artifacts, where points from distinct
objects are erroneously merged into a single segment. Recent studies have sought to
address these challenges through various innovative techniques. Proposals such as [22]
developed an elevation map employing euclidean clustering principles and an adaptive
multi-plane extraction method based on Random Sample Consensus (RANSAC) [23]. Simi-
larly, Steinke et al. [24] proposed a 2D elevation map representation coupled with a point
height variance analysis approach to classify cells as terrain. Expanding on the concept of
data representation, Oh et al. [25] introduced a graph-based approach known as Tri-Grid
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Field (TGF) to model terrain geometry, facilitating the analysis of local convexity and
concavity to determine environmental traversability.

Another prevalent form of representation of the three-dimensional environment is the
Digital Terrain Model (DTM). Studies such as Refs. [26,27] aim to create such models by
applying morphological filters to airborne LiDAR data for ground segmentation. Morpho-
logical operations are employed to filter objects based on their size and height relative to
the terrain, thereby preserving steep features. The DTMs represent the bare-earth surface
by excluding non-ground features such as buildings and vegetation while preserving key
terrain characteristics like slopes, ridges, and cliffs. Morphological filters, while effective
in simple terrain, face challenges in complex environments (urban, mountainous, and
forested) due to their parameter sensitivity, computational limitations, and difficulty in
preserving topographic detail.

However, the challenges of processing raw and unorganized point clouds have driven
the development of methods that directly operate on 3D spatial data without prior structur-
ing. Himmelsbach et al. [28], LineFit, pioneered a uniform angular sector discretization
framework to mitigate radial sparsity in LiDAR point clouds, particularly at increasing
sensor distances. This approach implements an adaptive linear adjustment to estimate
straight-line equations per radial bin, with ground points determined through a multi-
criteria filter. Conversely, Zermas et al. [29] proposed the technique named Ground Plane
Fitting (GPF), dividing point clouds into three parts along the x-axis, implementing a deter-
ministic plane estimation algorithm that utilizes adaptive seed selection with low spatial
variance for ground plane estimation based on Principal Component Analysis (PCA). This
approach avoids stochastic methods such as RANSAC [23], bypassing the time-consuming
computation of iterations and introducing robustness to point density.

Recent advances in the field have addressed the sensitivity to point density variations
through the implementation of non-uniform polar discretization strategies. Lim et al. [30],
Patchwork, introduced the Concentric Zone Model (CZM), partitioning the spatial domain
into annular subregions. In line with the methodology of Zermas et al. [29], the authors
of this work implemented a Regional Ground Plane Fitting (R-GPF) that estimates par-
tial planes in each bin by principal component analysis, with adaptive selection of initial
seeds to avoid local minima. Building on this work, Lee et al. [31], Patchwork++, incorpo-
rated Temporal Terrain Reversal (TGR) to mitigate partial under-segmentation issues by
leveraging information from previous frames.

Further advancements in the area include the work of Deng et al. [32] and
Dong et al. [33], who proposed voxel neighborhood continuity analysis. These approaches
utilize contextual relationships between adjacent voxels to enhance segmentation robust-
ness in complex terrains with abrupt elevation changes. Deng et al. [32], RT-GS, determined
ground continuity between adjacent grids by comparing the normal vectors and average
heights of ground planes, while Dong et al. [33] employed spatial relationships between
sectors to address areas with insufficient information for confident plane extraction.

2.3. Visual-Based Ground Segmentation Methods

Visual ground segmentation methods have emerged as a computationally efficient
paradigm for terrain identification in complex urban environments. These approaches
exploit the structured nature of LiDAR data by projecting 3D point clouds onto 2D rep-
resentations, enabling the application of image processing techniques while preserving
spatial relationships. Early work by Moosmann et al. [34] introduced a local convexity
criterion operating directly on spherical range images, enabling ground–object separation
in non-flat environments without compromising 3D geometric representation.
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This foundational work inspired subsequent advances in range-image processing,
such as Bogoslavskyi et al. [35]. The authors developed a slope-based segmentation method
which transformed raw LiDAR scans into slope images through pairwise row-pixel analysis,
followed by Savitsky–Golay smoothing and ground labeling.

Contemporary techniques such as the Jumping Convolution Process (JCP) [36] or
DipG-Seg [37] demonstrate this progression through hierarchical refinement frameworks.
These approaches combine non-linear filtering with majority-vote kernel convolutions
based on convolution to improve segmentation accuracy. Despite these advancements,
fundamental limitations persist in purely image-based segmentation. The widespread
reliance on independent slope features, calculated from isolated vertical pixel pairs, proves
to be inadequate for complex terrains. This constraint arises from the limited receptive field
of slope operators, which cannot capture contextual relationships across adjacent regions.

2.4. Learning-Based Ground Segmentation Methods

Machine learning has emerged as a principal paradigm for addressing ground segmen-
tation challenges. Recent techniques, such as PSVM [38] and PSVM-2 [39], take advantage
of Support Vector Machine (SVM) classifiers to analyze geometric descriptors derived from
raw LiDAR point clouds. These include surface normals, local curvature metrics, and con-
textual terrain features. A key innovation in these approaches is their multi-resolution
pyramidal framework, which hierarchically fuses spatial information across varying scales
to enhance segmentation robustness in heterogeneous environments.

However, these methods rapidly transitioned toward visual data as the primary input,
largely driven by the remarkable performance of convolutional neural networks (CNNs)
in image classification tasks. This shift was the key factor that led to the development of
specialized network architectures such as GA-Nav [40], DeconvNet [41], or the bilateral
architecture proposed in [42]. All of these frameworks exclusively utilize visual inputs
for pixel-wise terrain classification, aiming to identify traversable paths by distinguishing
navigable ground surfaces from obstacles in complex environments.

From a two-dimensional perspective to a three-dimensional domain, CNNs become
impractical when handling sparse 3D point clouds, where data sparsity stems from the
irregular spatial distribution of non-zero measurements. The direct application of conven-
tional 2D convolution kernels to these irregular 3D structures results in computational
demands that scale cubically with data density. Thus, two possible approaches emerge.

The first alternative integrates geometric priors with learned representations to balance
adaptability and computational efficiency. GndNet [43] exemplifies this approach by
employing an encoder–decoder architecture that relies on PointNet and a Pillar Feature
Encoding network to estimate terrain elevation in grids. SectorGS-Net [44] focuses on sector-
wise feature encoding, enabling more adaptive and context-aware ground segmentation
in complex outdoor environments. Recent hybrid frameworks, such as those proposed
by Atas et al. [45], combine geometric features with robot dynamics (orientation and
movement) through a fully connected neural network.

The second approach is based on the notion of sparse convolution, a concept derived
from signal processing. Conventional 2D convolution systematically scans all grid positions;
in contrast, sparse convolution dynamically focuses computational resources on occupied
voxels via hash-based memory management. By eliminating redundant computations
in empty spaces, SCNNs achieve significant gains in both computational efficiency and
memory utilization, enabling real-time performance in autonomous systems that rely on
LiDAR-based terrain analysis. Studies such as [46,47] use SCNNs to predict per-voxel
traversability from geometric features (height, density, and structural context).
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In light of the significant advancements witnessed in recent years, an alternative
approach involves the utilization of Large Language Models (LLMs) to facilitate 3D seg-
mentation through textual instructions. Researchers have proposed approaches based
on contrastive learning, which aims to align a textual description with geometric points
belonging to a specific class. This alignment can be achieved through the fusion of 3D
embeddings [48] or by directly processing point clouds [49,50].

3. Methodology
The method proposed in this article primarily falls within the geometric approaches

category, with a secondary emphasis on machine learning paradigms through the use of a
sparse neural network to overcome the sensitivity of geometric approaches to sparse data
as point clouds. Specifically, our approach lies at the intersection of non-uniform polar
discretization methods (such as those proposed by Lim et al. [30] and Lee et al. [31]) and
approaches that utilize neighborhood analysis to enhance robustness in complex terrains
(Deng et al. [32] and Dong et al. [33]). The main limitations this method aims to overcome
are as follows: (i) robustness to the incremental dispersion of data inherent to LiDAR
technology and (ii) independence from parameter selection or decision thresholds that
determine the performance of geometric methods, limiting their adaptability to diverse
environment. By addressing these aspects, the proposed method offers a more versatile
and robust solution for ground segmentation in diverse environments, bridging the gap
between purely geometric and learning-based approaches.

3.1. Problem Statement

Given a LiDAR point cloud P = {pi}N
i=1, where pi = (xi, yi, zi) ∈ R3, we define the

ground segmentation task as a binary segmentation problem, wherein each point of the
cloud is assigned a label li ∈{0,1} obstacle and traversable ground, respectively. Therefore,
the datasets under consideration have been reduced to two labels. Points within the
traversability category are defined as follows: road, parking, sidewalk, other ground, and
lane marking in structured environments (SemantincKITTI) and terrain, grass, dirt, and
mud in unstructured environments (Rellis-3D). Conversely, the obstacle category includes
all other classes represented in the datasets under review, such as building, bicycle, car,
person, and so forth.

This section introduces a novel methodology for traversable ground segmentation in
3D point cloud data, combining an iterative multi-resolution polar mapping framework
with TE-NeXt [15] to address the challenges of terrain feature extraction across diverse
environmental conditions, as illustrated in Figure 1. The method begins by discretizing
the spatial domain into coarse-resolution polar sectors by means of CZM. This initial
discretization establishes the core representation of the environment, allowing the efficient
extrapolation of geometric knowledge from historically traversed regions across the entire
discretized space.

Following this initialization, sector classification is iteratively refined using geometric
criteria designed to minimize the dependence on point density. Thus, at each level of
resolution, for each sector and its adjacencies, the plane coefficients are estimated after a
selection of seeds suitable for carrying out Principal Component Analysis (PCA), mitigating
the density-dependent limitations in traditional methods like RANSAC. In order to address
the limitations of the geometric approach, as will be discussed in Section 5, TE-NeXt [15] is
introduced. This network is based on an encoder–decoder architecture adapted to the three-
dimensional domain and follows the development philosophy presented in ConvNeXt [51].
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Figure 1. Multi-stage traversable ground segmentation framework overview. This figure illustrates
the processes involved in the segmentation of traversable ground. Given an input point cloud, prior
knowledge is employed to identify analogous sectors. Thereafter, the discretization and calculation
of ground detection planes are performed iteratively through various resolutions.

3.2. Similarity-Based Ground Segmentation

The representation of continuous domains through finite elements constitutes the main
strategy in 3D data processing. In the context of point cloud-based ground segmentation,
single-plane surface detection reveals limitations when applied to complex terrains. There-
fore, the procedure of dividing the three-dimensional space into zones of variable geometry
allows for the extraction of local features, the modeling of surface variability, and the
mitigation of point-cloud scattering effects. Thus, the proposed approach implements the
polar discretization designed in [30], partitioning the 3D space, P , into sectors {Sk(rk, θk)}
with adaptive radial resolution.

Existing methodologies in the literature, as discussed in Section 2, rely on the afore-
mentioned discretization and human-defined thresholds to classify individual points as
traversable ground or obstacles. These approaches aim to achieve optimal segmentation by
manually tuning geometric or statistical criteria, such as slope limits or elevation variances.
In contrast, modern machine learning (ML) paradigms, particularly self-supervised meth-
ods, exploit learnt patterns from historical data to automate decision-making. The proposed
method extends this concept by incorporating spatio-temporal context, ensuring that the
initial ground plane estimation is based on both historical and future positional experiences.
This strategy is tested in widely used datasets in the field, which provide spatio-temporal
pose associations for each point cloud. The decision to utilize positional data is grounded
in the fact that the proposed method is specifically tailored for intelligent mobile systems.
Positional information allows the incorporation of terrain features from previously tra-
versed areas, which serve as key discriminative factors for identifying traversable ground.
In the absence of such positional data, the method can still be implemented; however, it
would lack of the similarity-based component for detecting traversable ground.
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Figure 2 illustrates a concentric zone model applied to 3D point clouds. The space is
divided into polar segments with varying resolutions based on the radial distance from the
sensor. Specifically, the model partitions the space into distinct zones, which are further
subdivided into X concentric rings. Each ring corresponds to an annular region defined by
two radii, ri and r1+1. Additionally, each ring is segmented into angular sectors determined
by azimuthal θ and polar ϕ angles in spherical coordinates. Furthermore, the coordinates
which define the prior geometric knowledge from regions previously traversed by the
robotic platform are represented as white points in Figure 2. This knowledge contributes to
the identification of traversable terrain properties by means of historical navigation data.
Coordinate transformations are facilitated by the global reference frames associated with
each point cloud, which are obtained through classical algorithms such as the Iterative
Closest Point (ICP) or visual odometry. Specifically, positions, Ltj, are projected into the
current sensor frame, L, via Equation (1). This equation represents the homogeneous
transformations applied to positional data measured in a global reference system, G,
to a local system, L. The matrix

(GTL
)−1 is the homogeneous transformation matrix

that allows the transformation of coordinates from the global system to the local system.
The coordinates of the positions, j, expressed in the global system G are denoted as Gtj.

Ltj =
(

GTL

)−1
· Gtj (1)

Once the Cartesian coordinates are projected into the local polar grid, an adaptive
threshold is computed based on two sector-wise geometric properties derived from PCA.
First, the height variance, represented as σ2

z in Equation (2), quantifies elevation consistency
within each K sector, where z̄ = 1

|N | ∑N
i=1 zi represents the mean height of the N points in

the sector. Second, the surface curvature, C, is derived from the eigenvalues, Equation (3),
where lower curvature values indicate planar regions characteristic of ground surfaces.

Figure 2. Projection of Cartesian coordinates at the coarsest polar resolution level (Level 0).

σ2
z =

1
N − 1

N

∑
i=1

(zi − z̄)2 (2)

C = λ3

λ1 + λ2 + λ3
(3)

To establish dynamic thresholds, the method aggregates these metrics across K sectors,
computing the global mean µ and standard deviation σ of both geometric properties
extracted. Thus, a sector Sk is classified as traversable if it satisfies the dual thresholding
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criterion shown in Equation (4), where α and β are tunable parameters controlling the
classification confidence. Algorithm 1 delineates the implementation of the aforementioned
methodology.

µσz − βσσz ≤ σ2
z,k ≤ µσz + βσσz and µC − ασC ≤ Ck ≤ µC + ασC (4)

Algorithm 1 Ground Segmentation via similarity search

Input: Point cloud P = {pi ∈ R3}, poses T
Output: Labeled ground points L = {li ∈ {0, 1}}

1: Step 1: Pose Projection
2: Project past/future poses to current coordinate system: Ltj ←

(GTL
)−1 · Gtj

3: Step 2: Cylindrical Discretization
4: Partition P into sectors {Sk(rk, θk)} with adaptive radial resolution
5: Step 3: Geometric Feature Extraction
6: for each sector Sk do
7: Compute eigenvalues λ1 ≥ λ2 ≥ λ3 via PCA
8: Curvature: Ck ← λ3

λ1+λ2+λ3

9: Height variance: σ2
z,k ←

1
N ∑i∈N (zi − z̄k)

2

10: end for
11: Compute global statistics:
12: µC ← mean({Ck}), σC ← std({Ck})
13: µσz ← mean({σ2

z,k}), σσz ← std({σ2
z,k})

14: Step 4: Sector Classification
15: for each sector Sk do
16: if Ck ≤ µC + 2σC and σ2

z,k ≤ µσz + 2σσz then
17: Label all pi ∈ Sk as li = 1
18: end if
19: end for

3.3. Multi-Resolution Polar Grid

Following the initial classification of sectors based on the geometric criteria outlined
previously, the method addresses residual cases where traversable ground points remain
misclassified due to the following two primary challenges:

1. Vertical structures (e.g., walls, vegetation) introduce non-planar artifacts that skew
the local curvature and height variance metrics (Equations (2) and (3)).

2. Sparse data ambiguities are present in sectors with minimal point density (e.g., dis-
tant regions). There is an absence of sufficient data for reliable PCA-based feature
extraction (Equation (3)).

To address these challenges, we propose a hierarchical multi-resolution polar dis-
cretization framework comprising N distinct resolution levels. To illustrate the disparities
among various resolutions, refer to Figure 3. The n0 level of discretization, as illustrated in
Figure 3a, demonstrates a uniform resolution, signifying a coarser discretization, with indi-
vidual cells encompassing larger spatial domains equidistant from the sensor origin. Con-
versely, the finest granularity is achieved at Level n1, as demonstrated in Figure 3b, where
high-resolution cells enable the precise localization of terrain features. The framework’s
adaptive granularity allows the progressive refinement of geometric feature isolation,
critical for robust ground plane detection.
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(a)

(b)
Figure 3. Multi-resolution polar grid overview. (a) Uniform resolution grid. (b) Variable
resolution grid.

Contextual Refinement Stage

For each resolution level, sectors classified as obstacles by the similarity-based module
undergo a neighborhood-centric geometric analysis. This analysis selectively incorpo-
rates neighboring sectors that share the same spatial discretization, ensuring alignment
within the same area. Consequently, the algorithm aggregates geometric data from the
R-adjacent sectors for every unclassified circular sector. Given the possibility of encounter-
ing geometries that distort the geometrical study, this work follows the philosophy of [31].
The pipeline implements a three-stage filtering process as follows:

• Height-based point prioritization : It addresses geometric distortions caused by verti-
cal structures (e.g., vegetation and walls) by selectively retaining low-elevation points
as candidates for traversable ground plane estimation.

• Robust plane estimation: The retained points serve as seeds for traversable ground
plane estimation via PCA. The optimal plane n · p + d = 0, where n is the normal
vector and d the planar offset.
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• Geometric consistency validation: Given that the point-plane distance, Di =
|n·pi+d|
∥n∥ ,

is a relative quantity contingent on the plane’s orientation and offset (normal vector n
and d, respectively) and the dynamic threshold, derived from seed point elevations,
τdist = µz + kσz, is an absolute measure, where µz is the mean elevation, σz is the
standard deviation of elevation seeds and k is a statistical confidence parameter; the
direct comparison of Di and τdist is dimensionally inconsistent, as they encode distinct
physical and statistical phenomena. To establish a valid decision framework, we
normalize the distance by the standard deviation σz. This normalization converts geo-
metric deviations into unitless multiples of the standard deviation, where k determines
how many standard deviations away from the mean, µz, the threshold should be set.
This allows for controlling the sensitivity of the threshold to outliers or deviations,
Equation (5). By expressing deviations in terms of statistical significance, this ap-
proach bridges geometric and empirical criteria, ensuring cross-domain compatibility
and interpretable validation.

Dnorm
i =

|n · pi + d|
∥n∥ · σz

≤ k (5)

The process is described in detail in Algorithm 2.

Algorithm 2 Ground segmentation via multi-resolution polar discretization

Input: Point cloud P , number of polar discretizations N
Output: Labeled ground points L = {li ∈ {0, 1}}

1: for n = 1 to N do
2: Perform polar discretization at resolution level n to divide P into sectors Sn
3: for each sector s ∈ Sn do
4: Identify neighboring sectors: sup, sdown, sleft, sright
5: Collect points from s and its neighbors: Ps = s ∪ sup ∪ sdown ∪ sleft ∪ sright
6: Height-based Point Prioritization Sseed ← {pj ∈ Ps}
7: Robust Plane Estimation (n, d)← PCA(Sseed)
8: Geometric consistency Validation τd = µz + kσz of Sseed
9: for each point p ∈ Ps do

10: dnorm
i ← |n⊤pi+d|

∥n∥·σz
11: if dnorm

i ≤ k then
12: li = 1
13: else
14: li = 0
15: end if
16: end for
17: end for
18: end for

3.4. Sparse Convolutional Neural Network

As previously stated in Section 2.4, sparse convolutional neural networks are becoming
the most predominant approach to process point clouds in recent years. Thus, given any
point cloud, B, a sparse vector S is defined according to Equation (6), as a set of coordinates,
p⃗j, describing the cloud after applying a part-integer function and a scaling factor, v, that
determines the degree of discretization of the space. Furthermore, the sparse vectors enable
the storage of feature vectors, f̄ j, associated with all the discretized spaces represented.
The calculation of these values is derived from the weighting of the feature vectors, fi,
of each point that is encompassed in a discretized space, Vj. The processing of the input
data is carried out using the Minkowski Engine library (https://github.com/NVIDIA/
MinkowskiEngine, accessed on 3 April 2025) [52].

https://github.com/NVIDIA/MinkowskiEngine
https://github.com/NVIDIA/MinkowskiEngine
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p̄j = f loor( p⃗i) = f loor
( xi

v
,

yi
v

,
zi
v

)
(6)

f̄j =
1
|Vj| ∑

i∈Vj

fi (7)

Figure 4 illustrates TE-NeXt architecture [15], which is the sparse network employed
through the proposed method. TE-NeXt is a dedicated convolutional neural network,
specifically designed for the 3D semantic segmentation of point clouds, with a particu-
lar emphasis on the estimation of traversability. TE-NeXt builds upon the U-Net style
architecture [53], replacing the standard residual blocks, introduced by classical ResNet
networks [54], with a proprietary block inspired by ConvNeXt [51] design principles. This
block demonstrates greater abstraction than classical ResNet blocks since it allows the
employment of large 3D kernel sizes to model long-range dependencies combined with
linear convolutions that reduce computational cost, allow cross-channel mixing and adjust
dimensions for skip connections.

Figure 4. Detailed illustration of the TE-NeXt architecture. A LiDAR point cloud is subjected to
the extraction of descriptors at varying resolutions on the left-hand side of the image. Once the
information has been encoded, the initial dimensions are recovered in order to obtain a label for each
given point.

4. Datasets and Experimental Setup
In order to perform a quantitative evaluation of the performance of the proposed

method, a comparison is made against two publicly available and widely recognized
datasets in autonomous navigation research, as follows:

• SemanticKITTI [55]: It represents a comprehensive large-scale dataset for LiDAR-based
semantic scene understanding, extending the KITTI Vision Odometry Benchmark [56].
This benchmark offers dense per-point semantic annotations across the full 360° field of
view captured by the Velodyne HDL-64E LiDAR sensor, with over 43,000 LiDAR scans
from 22 sequences. The sequences cover a variety of highly structured environments
including city streets, residential areas, highways, and countryside roads.

• Rellis-3D [57]: It is a multimodal dataset explicitly designed for off-road robotic per-
ception and autonomous navigation, serving as a critical counterpart to urban-centric
autonomous driving benchmarks. The dataset comprises 13,556 annotated LiDAR
scans organized into five sequences, acquired using an Ouster OS1-64 sensor. Each
sequence captures unstructured natural terrains—including vegetated slopes, gravel
paths, and muddy surfaces—under varying illumination and weather conditions.

The evaluation framework is presented in Table 1, in which the previously mentioned
datasets can be observed. In addition to these datasets, an alternative method of validation
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has been developed. Two datasets have been captured in real and very different contexts
in order to validate the generalization of the algorithm. The experiments are based on
structured and unstructured environments, in the cities of Elche (Spain) and Coimbra
(Portugal), respectively. More specifically, the datasets have been collected as follows:

• UMH-Gardens: The study focuses on two sequences situated within the university
campus of the Miguel Hernández University of Elche, utilizing the HUSKY A-200
robotic platform. This platform is equipped with an Ouster OS1-128 LiDAR and a
georeferenced system with real-time kinematic (RTK) technology, ensuring centimetric
precision in measurement. The trajectories followed to capture these sequences are
shown in Figure 5a,b.

• Coimbra-Liv: This dataset has been captured using a combustion vehicle with the aim
of covering a large area of forest in the surroundings of the city of Coimbra. The vehicle
was equipped with a LiDAR Livox HAP sensor, which stands out because of its
high angular resolution, though at the expense of a reduced horizontal field of view.
Furthermore, the vehicle was also equipped with an enclosed multi-dual-frequency
RTK GNSS receiver, which has been designed for use in outdoor environments and
is capable of providing centimeter-accurate positioning. The trajectories followed in
these experiments are illustrated in Figure 5c,d.

(a) (b)

(c) (d)
Figure 5. Representation of the data collected. (a,b) Traversed environments within the University of
Elche campus. (c,d) Environments captured within the city of Coimbra. The trajectories followed are
colored in purple .

Table 1. Summary of the datasets employed in the evaluation.

Dataset Sem.KITTI Rellis-3D UMH-Gardens Coimbra-Liv

Environment Urban/Highway
(Structured)

Off-road
(Unstructured) Urban (Structured)

Urban
(Structured)/Off-road

Unstructured)
LiDAR Sensor Velodyne HDL-64E Ouster OS1-64 Ouster OS1-64 Livox HAP

Vertical Fov 26.9° (−24.8° to +2.0°) 45° (−22.5° to +22.5°) 45° (−22.5° to +22.5°) 25° (−12.5° to +12.5°)
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Table 1. Cont.

Dataset Sem.KITTI Rellis-3D UMH-Gardens Coimbra-Liv

Vertical Angular
Resolution 0.42º 0.35º 0.35º 0.23º

Horizontal Fov 360° 360° 360° 120°
Horizontal Angular

Resolution 0.09º 0.18º 0.18º 0.18º

Annotated Classes ✓ ✓ X X

5. Results and Discussion
The evaluation is conducted across two distinct environmental contexts to rigorously

assess generalization. First, structured urban environments are analyzed, ensuring eq-
uitable comparison with state-of-the-art methods. These settings are characterized by
geometric regularity (e.g., flat roads and vertical curbs), which facilitates direct perfor-
mance comparison with existing geometric and learning-based approaches. Secondly,
unstructured natural terrains are evaluated in order to quantify robustness in geometrically
inconsistent scenarios.

As a complement to the quantitative benchmarks, this article presents qualitative
results for the custom-captured UMH-Gardens and Coimbra-Liv datasets introduced in
Figure 5. These proprietary datasets, acquired in mixed urban–natural environments,
provide a realistic case study for validating the efficacy of the proposed method under
real-world conditions.

5.1. Evaluation Metrics

The proposed method and other competitive state-of-the-art methods are evaluated
on the following three widely used metrics: precision, recall, and the F1-score. In this
context, precision measures the proportion of correctly classified ground points (true
positives, TP) relative to all points predicted as ground, Precision = TP

TP+FP . It evaluates the
model’s ability to avoid false positives (FP), which is particularly critical in safety-critical
applications like autonomous navigation, where misclassifying obstacles as ground can
lead to dangerous outcomes. Recall measures the proportion of correctly classified ground
points relative to all actual ground points in the dataset, Recall = TP

TP+FN . It reflects the
model’s ability to identify all ground points, minimizing the false negatives (FN) and
ensuring that critical terrain features are not missed. The F1-score is the harmonic mean
of precision and recall, F1score = 2 · Precision·Recall

Precision+Recall , providing a single metric that balances
these two aspects. It is particularly useful when there is an imbalance between FP and FN,
as it penalizes extreme values in either metric.

5.2. Quantitative Evaluation
5.2.1. Results in Structured Environments

Structured environments are defined as urban areas that are generally created under
human supervision and therefore stand out for their regular geometries. Table 2 presents the
results of the traversable ground segmentation methods evaluated on the SemanticKITTI
dataset [55]. The proposed method is implemented in the following two distinct versions:

• Pure geometric version: Relies exclusively on geometric heuristics derived from
multi-resolution polar discretization and adaptive thresholding.

• Hybrid geometric-SCNN version: Combines geometric heuristics with TE-NexT [15] to
address regions where geometric distortions prevent reliable heuristic-based classification.
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The pure geometric version achieves the highest precision (95.1%) among all methods,
demonstrating its ability to minimize false positives by strictly adhering to geometric
rules. However, this is achieved at the cost of a low recall (88.0%), which leads to false
negatives in complex regions, such as sloped surfaces or areas with sparse point distribu-
tions. In contrast, the hybrid version successfully mitigates this trade-off by exploiting
the SCNN to refine ambiguous regions where heuristic-based methods obtain low preci-
sion. This approach significantly improves recall (96.3%) while maintaining high precision
(94.5%), resulting in an F1-score of 95.4%. While Patchwork++ achieves the highest recall
(99.3%), its lower precision (73.23%) leads to a reduced F1-score compared to the proposed
hybrid method.

Table 2. Traversable ground estimation performance of methods in urban environments (Se-
manticKITTI).

Method Precision (%) Recall (%) F1-Score (%)

RANSAC 67.0 88.7 76.3
LineFit [28] 87.8 71.9 78.0

GPF [29] 74.5 95.5 82.5
Patchwork [30] 72.7 98.1 89.6

Patchwork++ [31] 73.2 99.3 83.3
RT-GS [32] 77.3 98.5 85.7
PSVM [38] 89.4 89.0 89.2

PSVM-2 [39] 92.6 90.8 91.7
Ours (only geometric) 95.1 88.0 91.4

Ours
(geometric-SCNN) 94.5 96.3 95.4

Note: Bold values indicate the best performance for each metric.

To address the demands of real-world applications, Table 3 presents a detailed com-
parison of the performance of both variants of the method (pure geometric and hybrid
geometric-SCNN), together with the best performing state-of-the-art method, P-SVM2,
on all SemanticKITTI sequences. We conduct a comprehensive scene migration experiment
designed to evaluate the method’s robustness across diverse structured environments with
limited training data. The hybrid variant is exclusively trained on the SemanticKITTI
sequence 08. Following our previous analysis, the experimental results reveal distinct
performance characteristics between the pure geometric and hybrid variants. The ge-
ometric method achieves superior precision scores, demonstrating its effectiveness in
minimizing false positives through strict geometric constraints. However, this conservative
classification strategy has been shown to have a significant impact on the system’s recall
performance, as it frequently misclassifies legitimate traversable ground points in complex
or ambiguous regions as obstacles. The hybrid geometric-SCNN approach, conversely,
exhibits more balanced performance metrics. While its precision does not exceed that of
the pure geometric variant, it achieves substantially higher recall rates, since it learns from
features to decide ambiguous cases. This balanced trade-off is reflected on its superior
F1-score, indicating greater overall segmentation reliability.

5.2.2. Results in Unstructured Environments

Following the same methodology described in the previous section, Table 4 presents
the performance of the proposed method in unstructured environments, such as natural
terrains. To the best of our knowledge, there exist no results previously published on the
traversable ground segmentation on unstructured datasets such as the Rellis-3D or any
other similar dataset. Consequently, given the scarcity of robust approaches specifically
designed for these challenging scenarios, the comparison is more limited. The table includes
results from the two variants of the proposed method (previously explained), as well as



Technologies 2025, 13, 162 16 of 22

those from a sparse convolutional neural network (TE-NeXt) and classical approaches such
as RANSAC.

Table 3. Generalization comparison of the proposed method on the SemanticKITTI database (struc-
tured environments).

Precision (%) Recall (%) F1 (%)

Num. P-SVM2 Ours
(Geometric)

Ours
(Hybrid) P-SVM2 Ours

(Geometric)
Ours

(Hybrid) P-SVM2 Ours
(Geometric)

Ours
(Hybrid)

00 91.4 96.0 96.1 91.6 89.8 97.0 91.3 92.9 96.2
01 86.6 93.3 93.5 84.4 88.7 94.6 88.8 90.7 93.2
02 92.1 96.3 95.6 93.5 84.8 96.5 90.7 90.0 95.6
03 91.3 83.6 78.0 91.6 90.0 91.0 91.0 85.9 86.3
04 87.4 94.6 95.3 85.6 90.3 98.0 89.3 92.2 95.4
05 91.4 94.6 94.7 90.5 87.9 96.7 91.4 91.0 94.8
06 89.0 97.8 97.6 88.4 90.7 98.0 89.6 94.0 97.6
07 91.4 96.0 96.4 91.8 92.0 97.7 91.1 93.9 96.6
09 90.4 95.4 94.1 90.4 85.0 95.2 90.5 90.0 94.2
10 91.0 94.0 91.6 91.1 81.0 98.1 91.0 86.0 92.0

Full 92.6 95.1 94.5 90.8 88.0 96.3 91.7 91.4 95.4

Note: Bold values indicate the best performance in each metric across the SemanticKITTI sequences.

As observed in structured environments, the purely geometric variant of the proposed
method demonstrates the highest precision, achieving a value of 78.6%. This result is
expected due to the restrictive nature of geometric constrains when classifying traversable
ground points. On the contrary, both versions that incorporate neural networks report
significantly lower precision values, indicating that their predictions generate a consid-
erable number of false positives. In unstructured environments, this limitation can be
particularly critical for safety-demanding applications, where false positives may lead to
the misclassification of obstacles as traversable terrain.

Similarly to the findings observed in structured environments (Section 5.2.1), the recall
metrics of learning-based methods demonstrate a higher efficacy, with values approaching
91%, which signifies the inference of fewer false negatives. In terms of metric stabil-
ity, the geometric approach demonstrates the most balanced performance, achieving an
F1-score of 80.77%, reflecting its robustness and reliability across diverse sequences. The hy-
brid method closely follows, with an F1-score of 75.8%, while TE-NeXt achieves a score
of 76.8%. These results highlight the importance of balancing precision and recall in
safety-demanding applications like autonomous navigation in unstructured terrains.

Table 4. Traversable ground estimation performance of methods in natural environments (Rellis-3D).

Method Precision (%) Recall (%) F1-Score (%)

RANSAC 54.2 86.3 66.5
TE-NeXt [15] 66.2 91.0 76.8

Ours (only geometric) 78.6 83.1 80.8
Ours

(geometric-SCNN) 64.8 90.8 75.8

Note: Bold values indicate the best performance in each metric.

Table 5 presents the performance of the proposed methods across individual test
sequences in the Rellis-3D dataset, excluding sequence 04, which was used for training the
neural network in the comparison. The results provide a detailed breakdown of precision,
recall, and F1-score for each sequence, offering insights into the behavior of both geometric
and learning-based approaches under varying terrain conditions.
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The geometric approach consistently achieves the highest precision across all test
sequences, with values ranging from 72.0% to 93.6%, and an overall precision of 78.6%.
This result highlights its restrictive nature when classifying traversable points, as it mini-
mizes false positives by confidently rejecting obstacles points. However, this conservative
characteristic comes at the cost of recall, where the geometric method lags behind other
approaches. The trade-off between precision and recall is evident in learning-based meth-
ods, which tend to classify more points as traversable, including false positives. This bias
reduces false negatives but increases false positives, leading to lower precision scores (e.g.,
TE-NeXt achieves 66.2% overall precision). Unlike in structured environments, the hybrid
approach does not generate the best overall results (F1-score), mainly due to the absence of
well-defined geometries that allow the neural networks to establish discriminative patterns
between the inferred classes.

Table 5. Generalization comparison of the proposed method on the Rellis-3D database (unstruc-
tured environment).

Precision (%) Recall (%) F1 (%)

Num. TE-NeXt Ours
(Geometric)

Ours
(Hybrid) TE-NeXt Ours

(Geometric)
Ours

(Hybrid) TE-NeXt Ours
(Geometric)

Ours
(Hybrid)

00 67.6 72.0 65.3 84.4 75.0 88.0 71.3 70.5 71.5
01 50.0 61.4 49.1 95.3 96.3 83.0 62.2 68.3 61.9
02 61.0 84.0 59.7 94.0 82.0 96.3 71.0 80.5 70.4
03 90.2 93.6 89.2 87.6 79.5 90.8 88.6 85.6 89.7

Full 66.2 78.6 64.8 91.0 83.1 90.8 76.8 80.8 75.8

Note: Bold values indicate the best performance in each metric across the RELLIS-3D sequences.

5.3. Qualitative Evaluation

As illustrated in Figure 6, the output point clouds generated by the two variants
introduced in the previous section, the geometric version and the hybrid version, are based
on samples collected from the two trajectories that define the UMH-Gardens experiment.
Specifically, Figure 6a,c corresponds to the results of the purely geometric approach, while
Figure 6b,d shows the output of the hybrid method described in Figure 1.

In these figures, one can observe the previously mentioned facts from Section 5.2.1,
in which the results were discussed. In structured environments, the geometric version
generates numerous false negatives, highlighted in green circles throughout Figure 6a,c, due
to the lack of flexibility of the geometric heuristics. Conversely, the hybrid version employs
a neural network in these areas that has been geometrically discarded as ground and
re-evaluates them, Figure 6b,d. Additionally, it is observed that despite employing polar
discretization that offers advantages over dispersion, in distant areas, minor distortions
result in the misclassification of ground points.

(a) (b)
Figure 6. Cont.
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(c) (d)
Figure 6. Results of the UMH-Gardens experiment. (a) Point cloud labeled using the pure geometric
method from the UMH-Gardens dataset on the trajectory shown in Figure 5a. (b) Point cloud labeled
using the hybrid method from the UMH-Gardens dataset on the trajectory shown in Figure 5a.
(c) Point cloud labeled using the pure geometric method from the Coimbra-Liv dataset on the
trajectory shown in Figure 5b. (d) Point cloud labeled using the hybrid method from the Coimbra-Liv
dataset on the trajectory shown in Figure 5b. The points classified as ground are represented in ,
and the points classified as non-ground are represented in .

Figure 7 illustrates the results obtained from the Coimbra-Liv experiment, which
was designed to evaluate performance in semi-structured and unstructured environments.
Figure 7a,b emphasizes the errors previously discussed in Section 5.2.2. Specifically, the ge-
ometric variant exhibits a tendency to generate false negatives (low recall) in regions that
should be classified as traversable ground, highlighting its restrictive nature.

Conversely, the hybrid variant addresses this issue by introducing a bias toward
traversable ground classification (reducing false negatives but increasing false positives).
This effect is evident at the boundaries of the car geometry in Figure 7b, where the points
are incorrectly classified as traversable ground. Consequently, the learning-based approach
achieves lower precision due to an increase in false positives.

The same behavior is observed in Figure 7c,d, where the highlighted regions indicate
areas where the hybrid method generates false positives. These results highlight the trade-
off between precision and recall in hybrid approaches, especially in complex environments.

(a) (b)
Figure 7. Cont.
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(c) (d)
Figure 7. Results of the Coimbra-Liv experiments. (a) Point cloud segmented using the geometric
method on the trajectory shown in Figure 5c. (b) Point cloud segmented using the hybrid method
on the trajectory shown in Figure 5c. (c) Point cloud segmented using the geometric method on the
trajectory shown in Figure 5d. (d) Point cloud segmented using the hybrid method on the trajectory
shown in Figure 5d. The points classified as ground are represented in , and the points classified as
non-ground are represented in .

6. Conclusions
This paper has presented a hybrid traversable ground segmentation method for point

clouds, combining geometric heuristics with deep learning techniques. Inspired by self-
supervised learning methodologies, the proposed approach incorporates a similarity search
module based on prior knowledge to perform an initial classification. Subsequently, multi-
resolution polar discretizations are employed to apply geometric heuristics to refine the
segmentation process. Finally, the incorporation of a sparse convolutional neural network
technique is intended to enhance the flexibility of the final outcome, particularly with
regard to points classified as ground. This approach is motivated by the observation that
the geometric study imposes significant restrictions on the segmentation process.

The experiments focus on two versions of the proposed method as follows: the purely
geometric variant and the hybrid variant. The findings highlight that both approaches
exhibit distinct advantages and limitations depending on the environment in which they
operate. In structured environments, the hybrid version achieves an F1-score of 95.4%,
outperforming the geometric variant, which achieves 91.2%. This improvement is attributed
to the restrictive nature of geometric heuristics when applied to point cloud data, where
measurements are often distorted due to light reflection or sensor noise, leading to a high
number of false negatives.

Conversely, in natural environments where geometries are diffused and clearly sepa-
rating traversable ground points is a non-trivial task, the geometric variant demonstrates
better metric balance, achieving an F1-score of 80.8% compared to 75.8% for the hybrid
method. The flexibility that benefits the hybrid approach in structured settings becomes a
disadvantage in natural terrains, as its less restrictive classification criteria lead to reduced
performance under such conditions. Nonetheless, the hybrid approach confers higher
reliability in terms of recall, which benefits non-critical approaches that require a higher
spatial resolution at the cost of precision.

Future work will include the addition of visual information through a LiDAR-camera
system, which will allow visual features to be introduced into the sparse tensors. Possibly
with the aim of mitigating the main problem of supervised learning—the annotation
process—we will investigate the usage of a hybrid method that allows the continuous
estimation of traversability.
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