Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/35328
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGilly, Katja-
dc.contributor.authorFiliposka, Sonja-
dc.contributor.authorAlcaraz, Salvador-
dc.contributor.otherDepartamentos de la UMH::Ingeniería de Computadoreses_ES
dc.date.accessioned2025-01-26T15:42:43Z-
dc.date.available2025-01-26T15:42:43Z-
dc.date.created2021-
dc.identifier.citationApplied Scienceses_ES
dc.identifier.issn2076-3417-
dc.identifier.urihttps://hdl.handle.net/11000/35328-
dc.description.abstractAdvanced learning algorithms for autonomous driving require lots of processing and storage power, which puts a strain on vehicles’ computing resources. Using a combination of 5G network connectivity with ultra-high bandwidth and low latency together with extra computing power located at the edge of the network can help extend the capabilities of vehicular networks. However, due to the high mobility, it is essential that the offloaded services are migrated so that they are always in close proximity to the requester. Using proactive migration techniques ensures minimum latency for high service quality. However, predicting the next edge server to migrate comes with an error that can have deteriorating effects on the latency. In this paper, we examine the influence of mobility prediction errors on edge service migration performances in terms of latency penalty using a large-scale urban vehicular simulation. Our results show that the average service delay increases almost linearly with the migration prediction error, with 20% error yielding almost double service latency.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent16es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.relation.ispartofseries11es_ES
dc.relation.ispartofseries3es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectedge computinges_ES
dc.subjectmigrationses_ES
dc.subjectpredictive modellinges_ES
dc.subjecturban vehicular scenarioses_ES
dc.subject.otherCDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnologíaes_ES
dc.titlePredictive Migration Performance in Vehicular Edge Computing Environmentses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.3390/app11030944es_ES
Aparece en las colecciones:
Artículos Ingeniería de computadores


Vista previa

Ver/Abrir:
 applsci-11-00944.pdf

1,43 MB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.