Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/11000/35328
Predictive Migration Performance in Vehicular Edge Computing Environments
Título : Predictive Migration Performance in Vehicular Edge Computing Environments |
Autor : Gilly, Katja Filiposka, Sonja Alcaraz, Salvador |
Editor : MDPI |
Departamento: Departamentos de la UMH::Ingeniería de Computadores |
Fecha de publicación: 2021 |
URI : https://hdl.handle.net/11000/35328 |
Resumen :
Advanced learning algorithms for autonomous driving require lots of processing and storage power, which puts a strain on vehicles’ computing resources. Using a combination of 5G network connectivity with ultra-high bandwidth and low latency together with extra computing power located at the edge of the network can help extend the capabilities of vehicular networks. However, due to the high mobility, it is essential that the offloaded services are migrated so that they are always in close proximity to the requester. Using proactive migration techniques ensures minimum latency for high service quality. However, predicting the next edge server to migrate comes with an error that can have deteriorating effects on the latency. In this paper, we examine the influence of mobility prediction errors on edge service migration performances in terms of latency penalty using a large-scale urban vehicular simulation. Our results show that the average service delay increases almost linearly with the migration prediction error, with 20% error yielding almost double service latency.
|
Palabras clave/Materias: edge computing migrations predictive modelling urban vehicular scenarios |
Área de conocimiento : CDU: Ciencias aplicadas: Ingeniería. Tecnología |
Tipo de documento : info:eu-repo/semantics/article |
Derechos de acceso: info:eu-repo/semantics/openAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
DOI : https://doi.org/10.3390/app11030944 |
Aparece en las colecciones: Artículos Ingeniería de computadores
|
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.