Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/35328

Predictive Migration Performance in Vehicular Edge Computing Environments


Vista previa

Ver/Abrir:
 applsci-11-00944.pdf

1,43 MB
Adobe PDF
Compartir:
Título :
Predictive Migration Performance in Vehicular Edge Computing Environments
Autor :
Gilly, Katja  
Filiposka, Sonja  
Alcaraz, Salvador  
Editor :
MDPI
Departamento:
Departamentos de la UMH::Ingeniería de Computadores
Fecha de publicación:
2021
URI :
https://hdl.handle.net/11000/35328
Resumen :
Advanced learning algorithms for autonomous driving require lots of processing and storage power, which puts a strain on vehicles’ computing resources. Using a combination of 5G network connectivity with ultra-high bandwidth and low latency together with extra computing power located at the edge of the network can help extend the capabilities of vehicular networks. However, due to the high mobility, it is essential that the offloaded services are migrated so that they are always in close proximity to the requester. Using proactive migration techniques ensures minimum latency for high service quality. However, predicting the next edge server to migrate comes with an error that can have deteriorating effects on the latency. In this paper, we examine the influence of mobility prediction errors on edge service migration performances in terms of latency penalty using a large-scale urban vehicular simulation. Our results show that the average service delay increases almost linearly with the migration prediction error, with 20% error yielding almost double service latency.
Palabras clave/Materias:
edge computing
migrations
predictive modelling
urban vehicular scenarios
Área de conocimiento :
CDU: Ciencias aplicadas: Ingeniería. Tecnología
Tipo de documento :
info:eu-repo/semantics/article
Derechos de acceso:
info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
https://doi.org/10.3390/app11030944
Aparece en las colecciones:
Artículos Ingeniería de computadores



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.