Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/11000/35088
Measuring technical efciency for multi‐input multi‐output production processes through OneClass Support Vector
Machines: a fnite‐sample study
Título : Measuring technical efciency for multi‐input multi‐output production processes through OneClass Support Vector
Machines: a fnite‐sample study |
Autor : Moragues, Raul Aparicio, Juan Esteve, Miriam |
Editor : Springer |
Departamento: Departamentos de la UMH::Estudios Económicos y Financieros |
Fecha de publicación: 2023 |
URI : https://hdl.handle.net/11000/35088 |
Resumen :
Abstract
We introduce a new method for the estimation of production technologies in a multiinput multi-output context, based on OneClass Support Vector Machines with piecewise linear transformation mapping. We compare via a fnite-sample simulation
study the new technique with Data Envelopment Analysis (DEA) to estimate technical efciency. The criteria adopted for measuring the performance of the estimators are bias and mean squared error. The simulations reveal that the approach based
on machine learning seems to provide better results than DEA in our fnite-sample scenarios. We also show how to adapt several well-known technical efciency
measures to the introduced estimator. Finally, we compare the new technique with
respect to DEA via its application to an empirical database of USA schools from
the Programme for International Student Assessment, where we obtain statistically
signifcant diferences in the efciency scores determined through the Slacks-Based
Measure.
|
Palabras clave/Materias: Data envelopment analysis OneClassSVM Technical efciency Overftting Efciency measures |
Área de conocimiento : CDU: Ciencias puras y naturales: Matemáticas |
Tipo de documento : info:eu-repo/semantics/article |
Derechos de acceso: info:eu-repo/semantics/openAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
DOI : https://doi.org/10.1007/s12351-023-00788-4 |
Aparece en las colecciones: Artículos Estadística, Matemáticas e Informática
|
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.