Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/11000/35088
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Moragues, Raul | - |
dc.contributor.author | Aparicio, Juan | - |
dc.contributor.author | Esteve, Miriam | - |
dc.contributor.other | Departamentos de la UMH::Estudios Económicos y Financieros | es_ES |
dc.date.accessioned | 2025-01-21T11:46:29Z | - |
dc.date.available | 2025-01-21T11:46:29Z | - |
dc.date.created | 2023 | - |
dc.identifier.citation | Operational Research | es_ES |
dc.identifier.issn | 1866-1505 | - |
dc.identifier.uri | https://hdl.handle.net/11000/35088 | - |
dc.description.abstract | Abstract We introduce a new method for the estimation of production technologies in a multiinput multi-output context, based on OneClass Support Vector Machines with piecewise linear transformation mapping. We compare via a fnite-sample simulation study the new technique with Data Envelopment Analysis (DEA) to estimate technical efciency. The criteria adopted for measuring the performance of the estimators are bias and mean squared error. The simulations reveal that the approach based on machine learning seems to provide better results than DEA in our fnite-sample scenarios. We also show how to adapt several well-known technical efciency measures to the introduced estimator. Finally, we compare the new technique with respect to DEA via its application to an empirical database of USA schools from the Programme for International Student Assessment, where we obtain statistically signifcant diferences in the efciency scores determined through the Slacks-Based Measure. | es_ES |
dc.format | application/pdf | es_ES |
dc.format.extent | 33 | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Springer | es_ES |
dc.relation.ispartofseries | 23 | es_ES |
dc.relation.ispartofseries | 47 | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Data envelopment analysis | es_ES |
dc.subject | OneClassSVM | es_ES |
dc.subject | Technical efciency | es_ES |
dc.subject | Overftting | es_ES |
dc.subject | Efciency measures | es_ES |
dc.subject.other | CDU::5 - Ciencias puras y naturales::51 - Matemáticas | es_ES |
dc.title | Measuring technical efciency for multi‐input multi‐output production processes through OneClass Support Vector Machines: a fnite‐sample study | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s12351-023-00788-4 | es_ES |
Ver/Abrir:
s12351-023-00788-4-2.pdf
2,24 MB
Adobe PDF
Compartir:
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.