Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/35088
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorMoragues, Raul-
dc.contributor.authorAparicio, Juan-
dc.contributor.authorEsteve, Miriam-
dc.contributor.otherDepartamentos de la UMH::Estudios Económicos y Financieroses_ES
dc.date.accessioned2025-01-21T11:46:29Z-
dc.date.available2025-01-21T11:46:29Z-
dc.date.created2023-
dc.identifier.citationOperational Researches_ES
dc.identifier.issn1866-1505-
dc.identifier.urihttps://hdl.handle.net/11000/35088-
dc.description.abstractAbstract We introduce a new method for the estimation of production technologies in a multiinput multi-output context, based on OneClass Support Vector Machines with piecewise linear transformation mapping. We compare via a fnite-sample simulation study the new technique with Data Envelopment Analysis (DEA) to estimate technical efciency. The criteria adopted for measuring the performance of the estimators are bias and mean squared error. The simulations reveal that the approach based on machine learning seems to provide better results than DEA in our fnite-sample scenarios. We also show how to adapt several well-known technical efciency measures to the introduced estimator. Finally, we compare the new technique with respect to DEA via its application to an empirical database of USA schools from the Programme for International Student Assessment, where we obtain statistically signifcant diferences in the efciency scores determined through the Slacks-Based Measure.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent33es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.relation.ispartofseries23es_ES
dc.relation.ispartofseries47es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectData envelopment analysises_ES
dc.subjectOneClassSVMes_ES
dc.subjectTechnical efciencyes_ES
dc.subjectOverfttinges_ES
dc.subjectEfciency measureses_ES
dc.subject.otherCDU::5 - Ciencias puras y naturales::51 - Matemáticases_ES
dc.titleMeasuring technical efciency for multi‐input multi‐output production processes through OneClass Support Vector Machines: a fnite‐sample studyes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1007/s12351-023-00788-4es_ES
Aparece en las colecciones:
Artículos Estadística, Matemáticas e Informática


Vista previa

Ver/Abrir:
 s12351-023-00788-4-2.pdf

2,24 MB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.