Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/34218

Nonlinear estimators from ICA mixture models


no-thumbnailVer/Abrir:

 1-s2.0-S0165168418303347-main.pdf



1,45 MB
Adobe PDF
Compartir:

Este recurso está restringido

Título :
Nonlinear estimators from ICA mixture models
Autor :
Safont, Gonzalo
Salazar, Addisson
Vergara, Luis
Rodríguez, Alberto
Editor :
Elsevier
Departamento:
Departamentos de la UMH::Ingeniería de Comunicaciones
Fecha de publicación:
2018-10-05
URI :
https://hdl.handle.net/11000/34218
Resumen :
Independent Component Analyzers Mixture Models (ICAMM) are versatile and general models for a large variety of probability density functions. In this paper we assume ICAMM to derive new MAP and LMSE estimators. The first one (MAP-ICAMM) is obtained by an iterative gradient algorithm, while the second (LMSE-ICAMM) admits a closed-form solution. Both estimators can be combined by using LMSE-ICAMM to initialize the iterative computation of MAP-ICAMM .The new estimators are applied to the reconstruction of missed channels in EEG multichannel analysis. The experiments demonstrate the superiority of the new estimators with respect to: Spherical Splines, Hermite, Partial Least Squares, Support Vector Regression, and Random Forest Regression.
Palabras clave/Materias:
ICA
Nonlinear estimators
LMSE
MAP
EEG reconstruction
non-Gaussian mixtures
Área de conocimiento :
CDU: Ciencias aplicadas: Ingeniería. Tecnología
Tipo de documento :
info:eu-repo/semantics/article
Derechos de acceso:
info:eu-repo/semantics/closedAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
https://doi.org/10.1016/j.sigpro.2018.10.003
Aparece en las colecciones:
Artículos Ingeniería Comunicaciones



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.