Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/30571

Manifold analysis of the P-wave changes induced by pulmonary vein isolation during cryoballoon procedure


no-thumbnailView/Open:

 230301 Manifold analysis of the P-wave changes induced by pulmonary vein.pdf



5,47 MB
Adobe PDF
Share:

This resource is restricted

Title:
Manifold analysis of the P-wave changes induced by pulmonary vein isolation during cryoballoon procedure
Authors:
Martinez-Mateu, Laura  
Melgarejo Meseguer, Francisco Manuel  
Muñoz-Romero, Sergio  
Gimeno Blanes, Francisco Javier  
García-Alberola, Arcadi  
Ventura, Sara  
Saiz, Javier  
Rojo-Álvarez, José Luis  
Editor:
Elsevier
Department:
Departamentos de la UMH::Ingeniería de Comunicaciones
Issue Date:
2023-02
URI:
https://hdl.handle.net/11000/30571
Abstract:
Background/Aim: In atrial fibrillation (AF) ablation procedures, it is desirable to know whether a proper disconnection of the pulmonary veins (PVs) was achieved. We hypothesize that information about their isolation could be provided by analyzing changes in P-wave after ablation. Thus, we present a method to detect PV disconnection using P-wave signal analysis. Methods: Conventional P-wave feature extraction was compared to an automatic feature extraction procedure based on creating low-dimensional latent spaces for cardiac signals with the Uniform Manifold Approximation and Projection (UMAP) method. A database of patients (19 controls and 16 AF individuals who underwent a PV ablation procedure) was collected. Standard 12-lead ECG was recorded, and P-waves were segmented and averaged to extract conventional features (duration, amplitude, and area) and their manifold representations provided by UMAP on a 3-dimensional latent space. A virtual patient was used to validate these results further and study the spatial distribution of the extracted characteristics over the whole torso surface. Results: Both methods showed differences between P-wave before and after ablation. Conventional methods were more prone to noise, P-wave delineation errors, and inter-patient variability. P-wave differences were observed in the standard leads recordings. However, higher differences appeared in the torso region over the precordial leads. Recordings near the left scapula also yielded noticeable differences. Conclusions: P-wave analysis based on UMAP parameters detects PV disconnection after ablation in AF patients and is more robust than heuristic parameterization. Moreover, additional leads different from the standard 12-lead ECG should be used to detect PV isolation and possible future reconnections better.
Keywords/Subjects:
Ablation
Atrial fibrillation
P-wave
Manifold analysis
Signal processing
Simulation
Knowledge area:
CDU: Ciencias aplicadas: Ingeniería. Tecnología
Type of document:
info:eu-repo/semantics/article
Access rights:
info:eu-repo/semantics/closedAccess
DOI:
https://doi.org/10.1016/j.compbiomed.2023.106655
Appears in Collections:
Artículos Ingeniería Comunicaciones



Creative Commons ???jsp.display-item.text9???