Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/6502

Sensory Integration in Human Movement: A New Brain-Machine Interface Based on Gamma Band and Attention Level for Controlling a Lower-Limb Exoskeleton


Vista previa

Ver/Abrir:
 6-Sensory Integration in Human.pdf
6,72 MB
Adobe PDF
Compartir:
Título :
Sensory Integration in Human Movement: A New Brain-Machine Interface Based on Gamma Band and Attention Level for Controlling a Lower-Limb Exoskeleton
Autor :
Ortiz, Mario
Ferrero, Laura
Iáñez Martínez, Eduardo
Azorín Poveda, José María
Contreras Vidal, José Luis
Departamento:
Departamentos de la UMH::Ingeniería de Sistemas y Automática
Fecha de publicación:
2020-06-10
URI :
http://hdl.handle.net/11000/6502
Resumen :
Brain-machine interfaces (BMIs) can improve the control of assistance mobility devices making its use more intuitive and natural. In the case of an exoskeleton, they can also help rehabilitation therapies due to the reinforcement of neuro-plasticity through repetitive motor actions and cognitive engagement of the subject. Therefore, the cognitive implication of the user is a key aspect in BMI applications, and it is important to assure that the mental task correlates with the actual motor action. However, the process of walking is usually an autonomous mental task that requires a minimal conscious effort. Consequently, a brain-machine interface focused on the attention to gait could facilitate sensory integration in individuals with neurological impairment through the analysis of voluntary gait will and its repetitive use. This way the combined use of BMI+exoskeleton turns from assistance to restoration. This paper presents a new brain-machine interface based on the decoding of gamma band activity and attention level during motor imagery mental tasks. This work also shows a case study tested in able-bodied subjects prior to a future clinical study, demonstrating that a BMI based on gamma band and attention-level paradigm allows real-time closed-loop control of a Rex exoskeleton.
Palabras clave/Materias:
brain-machine interface
EEG
gamma band
lower-limb exoskeleton
motor imagery
human movement
sensory integration
Stockwell Transform
Área de conocimiento :
Ingeniería. Tecnología
Tipo documento :
application/pdf
Derechos de acceso:
info:eu-repo/semantics/openAccess
DOI :
http://dx.doi.org/10.3389/fbioe.2020.00735
Aparece en las colecciones:
Artículos Ingeniería de Sistemas y Automática



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.