Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/11000/39008
Detection of the Intention of Direction Changes During Gait Through EEG Signals
Ver/Abrir: Journal_IF_2021_a_IJNS.pdf
3,8 MB
Adobe PDF
Compartir:
Este recurso está restringido
Título : Detection of the Intention of Direction Changes During Gait Through EEG Signals |
Autor : Soriano Segura, Paula Iáñez Martínez, Eduardo Ortiz García, Mario Quiles Zamora, Vicente Azorín Poveda, José María |
Editor : World Scientific Publishing |
Departamento: Departamentos de la UMH::Ingeniería Mecánica y Energía |
Fecha de publicación: 2021 |
URI : https://hdl.handle.net/11000/39008 |
Resumen :
Brain–Computer Interfaces (BCIs) are becoming an important technological tool for the rehabilitation process of patients with locomotor problems, due to their ability to recover the connection between brain and limbs by promoting neural plasticity. They can be used as assistive devices to improve the mobility of handicapped people. For this reason, current BCIs have to be improved to allow an accurate and natural use of external devices. This work proposes a novel methodology for the detection of the intention to change the direction during gait based on event-related desynchronization (ERD). Frequency and temporal features of the electroencephalographic (EEG) signals are characterized. Then, a selection of the most influential features and electrodes to differentiate the direction change intention from the walking is carried out. Best results are obtained when combining frequency and temporal features with an average accuracy of 93.3 ± 11.5%, which are promising to be applied for future BCIs.
|
Palabras clave/Materias: direction change gait event-related desynchronization (ERD) electroencephalography (EEG) classification brain–Computer Interface (BCI) |
Área de conocimiento : CDU: Ciencias aplicadas: Ingeniería. Tecnología CDU: Ciencias aplicadas: Medicina: Patología. Medicina clínica. Oncología: Neurología. Neuropatología. Sistema nervioso |
Tipo de documento : info:eu-repo/semantics/article |
Derechos de acceso: info:eu-repo/semantics/closedAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
DOI : https://doi.org/10.1142/S0129065721500155 |
Publicado en: International Journal of Neural Systems (IJNS) |
Aparece en las colecciones: Artículos Ingeniería Mecánica y Energía
|
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.