Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/38903
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorZandonai, Thomas-
dc.contributor.authorBertamini, Giulio-
dc.contributor.authorLozano, Juan José-
dc.contributor.authorMallia, Luca-
dc.contributor.authorDe Maria, Alessandra-
dc.contributor.authorGALLI, FEDERICA-
dc.contributor.authorMonteagudo, Pablo-
dc.contributor.authorLucidi, Fabio-
dc.contributor.authorVenuti, Paola-
dc.contributor.authorFurlanello, Cesare-
dc.contributor.authorPeiro, Ana-
dc.contributor.otherDepartamentos de la UMH::Farmacología, Pediatría y Química Orgánicaes_ES
dc.date.accessioned2026-01-16T13:50:09Z-
dc.date.available2026-01-16T13:50:09Z-
dc.date.created2026-
dc.identifier.citationAddictive Behaviors. Volume 172, January 2026, 108493es_ES
dc.identifier.issn1873-6327-
dc.identifier.issn0306-4603-
dc.identifier.urihttps://hdl.handle.net/11000/38903-
dc.description.abstractExercise Dependence (ED) refers to uncontrollable, excessive exercise with harmful effects on life. This study used machine learning to identify behavioral and psychological factors contributing to ED risk. A multi-step procedure was implemented for model construction and validation, utilizing controlled feature selection and bootstrapping. Data were collected over three time points in diverse contexts (GR2021-22-23), recruiting 1099 participants (707 males, 64.3 %; 392 females, 35.7 %) with an average age of 24.8 ± 7.8 years. Based on the Exercise Dependence Scale-Revised (EDS-R), 5.6 % (n = 62) were classified as "At Risk" of ED, 50.9 % (n = 559) as "Non-Dependent-Symptomatic," and 43.5 % (n = 478) as "Non-Dependent-Asymptomatic." The final model predicted the GR2023 dataset with MAE = 6.90, R2 = 0.59, and RE = 9.08 %. Predictive performance on the GR2022 dataset was MAE = 5.65, R2 = 0.79, and RE = 6.73 %, while performance on the GR2021 dataset achieved MAE = 7.60, R2 = 0.58, and RE = 7.24 %. Perfectionism consistently emerged as the most important predictors, followed by Drive for Thinness, Drive for Muscularity, and sport characteristics. Result generalization was confirmed by a complementary, whole-data analysis. This study establishes a foundation for developing quantitative risk profiles for ED by analyzing multidimensional constructs and their contributions through interpretable machine learning. The methodology offers insights into how personality, psychological, and behavioral dimensions shape risk attitudes and provides robust predictive tools for assessing ED risk in sports contexts.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent9es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectHealthes_ES
dc.subjectRisk predictiones_ES
dc.subjectExercise dependencees_ES
dc.subjectAddictiones_ES
dc.subject.otherCDU::6 - Ciencias aplicadas::61 - Medicinaes_ES
dc.titlePredictive modelling links exercise dependence to associated psychological and behavioral risk factorses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1016/j.addbeh.2025.108493es_ES
Aparece en las colecciones:
Artículos - Farmacología, Pediatría y Química Orgánica


Vista previa

Ver/Abrir:
 Predictive modelling links exercise dependence to associated psychological and behavioral risk factors.pdf

1,95 MB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.