Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/11000/38845
A Parameterized Scheme of Metaheuristics to Solve NP-Hard Problems in Data Envelopment Analysis
Ver/Abrir: 2016_A Parameterized Scheme of Metaheuristics to Solve NP-Hard Problems in Data Envelopment Analysis-196-225.pdf
1,7 MB
Adobe PDF
Compartir:
Este recurso está restringido
Título : A Parameterized Scheme of Metaheuristics to Solve NP-Hard Problems in Data Envelopment Analysis |
Autor : Aparicio, Juan González-Espinosa, Martín López-Espín, José J. Pastor, Jesús T. |
Editor : Springer |
Departamento: Departamentos de la UMH::Estadística, Matemáticas e Informática |
Fecha de publicación: 2016-12 |
URI : https://hdl.handle.net/11000/38845 |
Resumen :
Data Envelopment Analysis (DEA) is a well-known methodology for
estimating technical efficiency from a set of inputs and outputs of Decision Making
Units (DMUs). This paper is devoted to computational aspects of DEA models
when the determination of the least distance to the Pareto-efficient frontier is the
goal. Commonly, these models have been addressed in the literature by applying
unsatisfactory techniques, based essentially on combinatorial NP-hard problems.
Recently, some heuristics have been introduced to solve these situations. This work
improves on previous heuristics for the generation of valid solutions. More valid
solutions are generated and with lower execution time. A parameterized scheme of
metaheuristics is developed to improve the solutions obtained through heuristics.
A hyper-heuristic is used over the parameterized scheme. The hyper-heuristic
searches in a space of metaheuristics and generates metaheuristics that provide
solutions close to the optimum. The method is competitive versus exact methods,
and has a lower execution time.
|
Palabras clave/Materias: Data envelopment analysis Closest targets Mathematical programming Metaheuristics Parameterized scheme |
Tipo de documento : info:eu-repo/semantics/bookPart |
Derechos de acceso: info:eu-repo/semantics/closedAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
DOI : 10.1007/978-3-319-48461-7_9 |
Publicado en: Advances in Efficiency and Productivity, Chapter 9 (p. 195-224) (2016) |
Aparece en las colecciones: Artículos - Estadística, Matemáticas e Informática
|
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.