Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/38844
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJuan, Carlos G.-
dc.contributor.authorPotelon, Benjamin-
dc.contributor.authorQuendo, Cédric-
dc.contributor.authorGarcía-Martínez, Héctor-
dc.contributor.authorÁvila-Navarro, Ernesto-
dc.contributor.authorBronchalo, Enrique-
dc.contributor.authorSabater-Navarro, José María-
dc.contributor.otherDepartamentos de la UMH::Ingeniería de Sistemas y Automáticaes_ES
dc.date.accessioned2026-01-12T11:35:37Z-
dc.date.available2026-01-12T11:35:37Z-
dc.date.created2021-10-
dc.identifier.citationIEEE Transactions on Instrumentation and Measurement, Vol. 70 (2021)es_ES
dc.identifier.issn1557-9662-
dc.identifier.issn0018-9456-
dc.identifier.urihttps://hdl.handle.net/11000/38844-
dc.descriptionLos derechos de autor de este artículo pertenecen al IEEE. El artículo se encuentra publicado en: https://ieeexplore.ieee.org/abstract/document/9585096es_ES
dc.description.abstractA low-cost, additively manufactured, biocompatible glucose sensor based on the changes in the unloaded quality factor (Qu) with a single split-ring resonator is presented. An exposition of the fundamentals for the use of the Qu as sensing parameter with microwave planar resonant sensors is shown. The convenience of this sensing parameter is analyzed from the theoretical point of view, and practical design and optimization guidelines are inferred with a special focus on the optimization of Qu sensitivity to glucose concentration. For practical demonstration and experimental assessment, a novel inverted microstrip configuration is considered, built upon a customized structure made with a certified biocompatible material thanks to 3-D printing techniques, which is aimed to provide for a stronger interaction between the electromagnetic fields and the sample. Two metallization solutions are investigated, yielding devices operating at 4.50 and 4.62 GHz, with operating Qu of 16.36 and 22.00, relative Qu sensitivities of 1.377 and 2.727, Qu sensitivities to glucose content within the physiological range of 0.3 × 10−3 per mg/dL and 0.6 × 10−3 per mg/dL, sensing areas of approximately 11.7 × 8.8 mm2 and total structure sizes of 950.0 × 35.0 × 3.5 mm3. The devices show good performance with water–glucose solutions covering a wide range of concentrations, involving physiological as well as industry-related ones.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent16es_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rightsinfo:eu-repo/semantics/closedAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject3D Printinges_ES
dc.subjectBiocompatibilityes_ES
dc.subjectGlucose sensorses_ES
dc.subjectInverted microstripes_ES
dc.subjectMicrowave sensorses_ES
dc.subjectQu factores_ES
dc.subjectSplit-ring resonators (SRRs)es_ES
dc.subject.otherCDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnologíaes_ES
dc.titleStudy of Qu-Based Resonant Microwave Sensors and Design of 3-D-Printed Devices Dedicated to Glucose Monitoringes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversion10.1109/TIM.2021.3122525es_ES
Appears in Collections:
Artículos - Ingeniería de Sistemas y Automática


no-thumbnailView/Open:

 Study_of_Q-Based_Resonant_Microwave_Sensors_and_Design_of_3-D-Printed_Devices_Dedicated_to_Glucose_Monitoring.pdf


3,47 MB
Adobe PDF
Share:


Creative Commons ???jsp.display-item.text9???