Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/38800
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorQuesada-Martínez, Manuel-
dc.contributor.authorFernández-Breis, Jesualdo Tomás-
dc.contributor.authorStevens, Robert-
dc.contributor.authorMikroyannidi, Eleni-
dc.contributor.otherDepartamentos de la UMH::Estadística, Matemáticas e Informáticaes_ES
dc.date.accessioned2025-12-15T09:00:42Z-
dc.date.available2025-12-15T09:00:42Z-
dc.date.created2014-05-
dc.identifier.citationMethods of Information in Medicine, Vol. 54, Nº 1 (2015)es_ES
dc.identifier.issn0026-1270-
dc.identifier.urihttps://hdl.handle.net/11000/38800-
dc.description.abstractIntroduction: This article is part of the Focus Theme of Methods of Information in Medicine on “Managing Interoperability and Complexity in Health Systems”. Objectives: In previous work, we have defined methods for the extraction of lexical patterns from labels as an initial step towards semi-automatic ontology enrichment methods. Our previous findings revealed that many biomedical ontologies could benefit from enrichment methods using lexical patterns as a starting point. Here, we aim to identify which lexical patterns are appropriate for ontology enrichment, driving its analysis by metrics to prioritised the patterns. Methods: We propose metrics for suggesting which lexical regularities should be the starting point to enrich complex ontologies. Our method determines the relevance of a lexical pattern by measuring its locality in the ontology, that is, the distance between the classes associated with the pattern, and the distribution of the pattern in a certain module of the ontology. The methods have been applied to four significant biomedical ontologies including the Gene Ontology and SNOMED CT. Results: The metrics provide information about the engineering of the ontologies and the relevance of the patterns. Our method enables the suggestion of links between classes that are not made explicit in the ontology. We propose a prioritisation of the lexical patterns found in the analysed ontologies. Conclusions: The locality and distribution of lexical patterns offer insights into the further engineering of the ontology. Developers can use this information to improve the axiomatisation of their ontologies.es_ES
dc.formatapplication/pdfes_ES
dc.language.isoenges_ES
dc.publisherThieme Gruppees_ES
dc.rightsinfo:eu-repo/semantics/closedAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectBiological ontologieses_ES
dc.subjectOntology enrichmentes_ES
dc.subjectQuality assurancees_ES
dc.subjectLexical patternses_ES
dc.titlePrioritising lexical patterns to increase axiomatisation in biomedical ontologies: The role of localisation and modularityes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttp://dx.doi.org/10.3414/ME13-02-0026es_ES
Aparece en las colecciones:
Artículos - Estadística, Matemáticas e Informática


no-thumbnailVer/Abrir:

 10.pdf



799,36 kB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.