Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/38779
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorBernabé-Díaz, José Antonio-
dc.contributor.authorFranco-Nicolás, Manuel-
dc.contributor.authorVivo-Molina, Juana María-
dc.contributor.authorQuesada-Martínez, Manuel-
dc.contributor.authorDuque-Ramos, Astrid-
dc.contributor.authorFernández-Breis, Jesualdo Tomás-
dc.contributor.otherDepartamentos de la UMH::Estadística, Matemáticas e Informáticaes_ES
dc.date.accessioned2025-12-11T09:00:45Z-
dc.date.available2025-12-11T09:00:45Z-
dc.date.created2020-08-
dc.identifier.citationIEEE Access, Nº8 (2020)es_ES
dc.identifier.issn2169-3536-
dc.identifier.urihttps://hdl.handle.net/11000/38779-
dc.description.abstractQuantitative metrics are generally applied by scientists to measure and assess the properties of data and knowledge resources. In ontology engineering, a number of metrics have been developed to analyse different features of ontologies in the last few years. However, this community has not generated any standard framework for studying the properties of ontologies or generated suf cient knowledge about the usefulness and validity as the measurement instrument of these metrics for evaluating and comparing ontologies. Recently, 19 ontology structural metrics were studied using the OBO Foundry and AgroPortal ontology repositories. This study was based on how each metric partitioned the two datasets into ve groups by applying the k-means algorithm. The results suggested that the use of ve clusters for every metric might be suboptimal. In this paper, we propose an automated process for the study of ontology structural metrics by including the selection of an optimal number of clusters for each metric. This optimal number is automatically obtained by using statistical properties of the generated clusters. Moreover, the cosine similarity is used for estimating the similarity of two repositories from the perspective of the behaviour of the same set of metrics. The results on the two datasets allow for a more realistic perspective on the behaviour of the metrics. In this paper, we show and discuss the difference observed in the comparative behaviour of the metrics on the two repositories when using the optimal number with respect to a predetermined number of clusters for every metric. The proposed method is not speci c for ontology metrics and therefore, can be applied to other types of metrics.es_ES
dc.formatapplication/pdfes_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectKnowledge-based systemses_ES
dc.subjectKnowledge engineeringes_ES
dc.subjectClustering methodses_ES
dc.subjectBiomedical informaticses_ES
dc.subjectBiomedical ontologieses_ES
dc.subjectQuality metricses_ES
dc.titleAn automated process for the repository-based analysis of ontology structural metricses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversion10.1109/ACCESS.2020.3015789es_ES
Aparece en las colecciones:
Artículos - Estadística, Matemáticas e Informática


Vista previa

Ver/Abrir:
 An automated process for the repository.pdf

2,31 MB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.