Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/38778
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorBernabé-Díaz, José Antonio-
dc.contributor.authorFranco, Manuel-
dc.contributor.authorVivo, Juana María-
dc.contributor.authorQuesada-Martínez, Manuel-
dc.contributor.authorFernández-Breis, Jesualdo Tomás-
dc.contributor.otherDepartamentos de la UMH::Estadística, Matemáticas e Informáticaes_ES
dc.date.accessioned2025-12-11T08:59:18Z-
dc.date.available2025-12-11T08:59:18Z-
dc.date.created2022-06-
dc.identifier.citationComputer Methods and Programs in Biomedicine, Nº 219 (2022)es_ES
dc.identifier.issn1872-7565-
dc.identifier.issn0169-2607-
dc.identifier.urihttps://hdl.handle.net/11000/38778-
dc.description.abstractBackground and objective: Metrics are commonly used by biomedical researchers and practitioners to measure and evaluate properties of individuals, instruments, models, methods, or datasets. Due to the lack of a standardized validation procedure for a metric, it is assumed that if a metric is appropriate for analyzing a dataset in a certain domain, then it will be appropriate for other datasets in the same domain. However, such generalizability cannot be taken for granted, since the behavior of a metric can vary in different scenarios. The study of such behavior of a metric is the objective of this paper, since it would allow for assessing its reliability before drawing any conclusion about biomedical datasets. Methods: We present a method to support in evaluating the behavior of quantitative metrics on datasets. Our approach assesses a metric by using clustering-based data analysis, and enhancing the decision- making process in the optimal classification. Our method assesses the metrics by applying two important criteria of the unsupervised classification validation that are calculated on the clusterings generated by the metric, namely stability and goodness of the clusters. The application of our method is facilitated to biomedical researchers by our evaluomeR tool. Results: The analytical power of our methods is shown in the results of the application of our method to analyze (1) the behavior of the impact factor metric for a series of journal categories; (2) which structural metrics provide a better partitioning of the content of a repository of biomedical ontologies, and (3) the heterogeneity sources in effect size metrics of biomedical primary studies. Conclusions: The use of statistical properties such as stability and goodness of classifications allows for a useful analysis of the behavior of quantitative metrics, which can be used for supporting decisions about which metrics to apply on a certain dataset.es_ES
dc.formatapplication/pdfes_ES
dc.language.isoenges_ES
dc.publisherELSEVIERes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectEvaluation metricses_ES
dc.subjectClustering-based data analysises_ES
dc.subjectUnsupervised classificationes_ES
dc.subjectStructural metricses_ES
dc.subjectMeta-analysises_ES
dc.titleAn automated process for supporting decisions in clustering-based data analysises_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1016/j.cmpb.2022.106765es_ES
Aparece en las colecciones:
Artículos - Estadística, Matemáticas e Informática


Vista previa

Ver/Abrir:
 An automated process.pdf

2,84 MB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.