Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/38614

Estimating production functions through additive models based on regression splines

Título :
Estimating production functions through additive models based on regression splines
Autor :
España Roch, Víctor Javier
Aparicio, Juan
Barber i Vallés, Josep Xavier
Esteve, Miriam
Editor :
Elsevier
Departamento:
Departamentos de la UMH::Estadística, Matemáticas e Informática
Fecha de publicación:
2024
URI :
https://hdl.handle.net/11000/38614
Resumen :
This paper introduces a new methodology for the estimation of production functions satisfying some classical production theory axioms, such as monotonicity and concavity, which is based upon the adaptation of an additive version of the machine learning technique known as Multivariate Adaptive Regression Splines (MARS). The new approach shares the piece-wise linear shape of the estimator associated with Data Envelopment Analysis (DEA). However, the new technique is able to surmount the overfitting problems associated with DEA by resorting to generalized cross-validation. In this paper, a computational experience was employed to measure how well the new approach performs, showing that it can reduce the mean squared error and bias of the estimator of the true production function in comparison with DEA and the more recent Corrected Concave Non-Parametric Least Squares (C2NLS) methodology. We also show that the success of the new approach depends on whether or not interactions among variables prevail and the degree of non-additivity of the true production function to be estimated.
Palabras clave/Materias:
data envelopment analysis
additive models
machine learning
overfitting
Área de conocimiento :
CDU: Ciencias sociales: Demografía. Sociología. Estadística: Estadística
CDU: Ciencias puras y naturales: Matemáticas: Análisis
Tipo de documento :
info:eu-repo/semantics/article
Derechos de acceso:
info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
https://doi.org/10.1016/j.ejor.2023.06.035
Publicado en:
European Journal of Operational Research (EJOR)
Aparece en las colecciones:
Artículos - Estadística, Matemáticas e Informática



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.