Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/38613

eat: An R Package for fitting Efficiency Analysis Trees


Thumbnail

View/Open:
 An R Package for fitting Efficiency.pdf

320,1 kB
Adobe PDF
Share:
Title:
eat: An R Package for fitting Efficiency Analysis Trees
Authors:
Esteve, Miriam
España Roch, Víctor Javier
Aparicio, Juan
Barber i Vallés, Josep Xavier
Editor:
The R Foundation
Department:
Departamentos de la UMH::Estadística, Matemáticas e Informática
Issue Date:
2022
URI:
https://hdl.handle.net/11000/38613
Abstract:
eat is a new package for R that includes functions to estimate production frontiers and technical efficiency measures through non-parametric techniques based upon regression trees. The package specifically implements the main algorithms associated with a recently introduced methodology for estimating the efficiency of a set of decision-making units in Economics and Engineering through Machine Learning techniques, called Efficiency Analysis Trees (Esteve et al. 2020). The package includes code for estimating input- and output-oriented radial measures, input- and output-oriented Russell measures, the directional distance function and the weighted additive model, plotting graphical representations of the production frontier by tree structures, and determining rankings of importance of input variables in the analysis. Additionally, it includes the code to perform an adaptation of Random Forest in estimating technical efficiency. This paper describes the methodology and implementation of the functions, and reports numerical results using a real data base application.
Keywords/Subjects:
efficiency analysis trees
technical efficiency
regression trees
random forest
production frontier
R programming
Knowledge area:
CDU: Ciencias sociales: Demografía. Sociología. Estadística: Estadística
CDU: Ciencias puras y naturales: Matemáticas: Análisis
CDU: Generalidades.: Ciencia y tecnología de los ordenadores. Informática.
Type of document:
info:eu-repo/semantics/article
Access rights:
info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI:
https://doi.org/10.32614/RJ-2022-054
Published in:
The R Journal
Appears in Collections:
Artículos - Estadística, Matemáticas e Informática



Creative Commons ???jsp.display-item.text9???