Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/38613

eat: An R Package for fitting Efficiency Analysis Trees


Vista previa

Ver/Abrir:
 An R Package for fitting Efficiency.pdf

320,1 kB
Adobe PDF
Compartir:
Título :
eat: An R Package for fitting Efficiency Analysis Trees
Autor :
Esteve, Miriam
España Roch, Víctor Javier
Aparicio, Juan
Barber i Vallés, Josep Xavier
Editor :
The R Foundation
Departamento:
Departamentos de la UMH::Estadística, Matemáticas e Informática
Fecha de publicación:
2022
URI :
https://hdl.handle.net/11000/38613
Resumen :
eat is a new package for R that includes functions to estimate production frontiers and technical efficiency measures through non-parametric techniques based upon regression trees. The package specifically implements the main algorithms associated with a recently introduced methodology for estimating the efficiency of a set of decision-making units in Economics and Engineering through Machine Learning techniques, called Efficiency Analysis Trees (Esteve et al. 2020). The package includes code for estimating input- and output-oriented radial measures, input- and output-oriented Russell measures, the directional distance function and the weighted additive model, plotting graphical representations of the production frontier by tree structures, and determining rankings of importance of input variables in the analysis. Additionally, it includes the code to perform an adaptation of Random Forest in estimating technical efficiency. This paper describes the methodology and implementation of the functions, and reports numerical results using a real data base application.
Palabras clave/Materias:
efficiency analysis trees
technical efficiency
regression trees
random forest
production frontier
R programming
Área de conocimiento :
CDU: Ciencias sociales: Demografía. Sociología. Estadística: Estadística
CDU: Ciencias puras y naturales: Matemáticas: Análisis
CDU: Generalidades.: Ciencia y tecnología de los ordenadores. Informática.
Tipo de documento :
info:eu-repo/semantics/article
Derechos de acceso:
info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
https://doi.org/10.32614/RJ-2022-054
Publicado en:
The R Journal
Aparece en las colecciones:
Artículos - Estadística, Matemáticas e Informática



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.