Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/38611

Machine learning applied to global scale species distribution models


Thumbnail

View/Open:
 Machine learning applied to global.pdf

6,07 MB
Adobe PDF
Share:
Title:
Machine learning applied to global scale species distribution models
Authors:
Fuster Alonso, Alba
Mestre Tomás, Jorge
Báez, José Carlos
Pennino, Maria Grazia
Barber i Vallés, Josep Xavier
Bellido, Jose María
Conesa Guillén, David Valentín
López Quílez, Antonio
Steenbeek, Jeroen
Christensen, Villy
Coll, Marta
Editor:
Nature Research
Department:
Departamentos de la UMH::Estadística, Matemáticas e Informática
Issue Date:
2025
URI:
https://hdl.handle.net/11000/38611
Abstract:
Species Distribution Models (SDMs) are widely used in ecology to analyze historical and future patterns of marine species distributions. Given the growing impact of climate change, predicting potential shifts in species ranges has become a key challenge. In this study, we apply Bayesian Additive Regression Trees (BART), a non-parametric machine learning algorithm, to estimate and forecast the global distribution of marine turtle species under different climate change scenarios. We model both individual species and their combined functional group, assess their historical and future habitat suitability, and examine the contribution of key environmental predictors. To evaluate BART’s performance, we conduct a simulation study under two contrasting distributional scenarios: a cosmopolitan and a persistent species. We also test the sensitivity of BART to pseudo-absence data and compare its performance with MaxEnt and Generalized Additive Models (GAMs). Results indicate that BART performs slightly better overall, particularly under pseudo-absence settings, showing higher accuracy and more stable sensitivity and specificity. These findings highlight BART as a reliable alternative for long-term, global-scale species distribution modeling in marine systems.
Keywords/Subjects:
marine turtles
global scale
long-term prediction
spatial distributions
environmental change
machine learning
BART
simulation
Knowledge area:
CDU: Ciencias puras y naturales: Biología: Ecología general y biodiversidad
CDU: Ciencias sociales: Demografía. Sociología. Estadística: Estadística
Type of document:
info:eu-repo/semantics/article
Access rights:
info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI:
https://doi.org/10.1038/s41598-025-20797-x
Published in:
Scientific Reports
Appears in Collections:
Artículos - Estadística, Matemáticas e Informática



Creative Commons ???jsp.display-item.text9???