Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/38609
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFigueira Pereira, Mario-
dc.contributor.authorBarber i Vallés, Josep Xavier-
dc.contributor.authorConesa, David Valentin-
dc.contributor.authorLópez Quílez, Antonio-
dc.contributor.authorMartínez Minaya, Joaquín-
dc.contributor.authorParadinas, Iosu-
dc.contributor.authorPennino, Maria Grazia-
dc.contributor.otherDepartamentos de la UMH::Estadística, Matemáticas e Informáticaes_ES
dc.date.accessioned2025-12-01T09:09:02Z-
dc.date.available2025-12-01T09:09:02Z-
dc.date.created2024-
dc.identifier.citationEcological Informaticses_ES
dc.identifier.issn1878-0512-
dc.identifier.issn1574-9541-
dc.identifier.urihttps://hdl.handle.net/11000/38609-
dc.description.abstractIn ecological studies, it is not uncommon to encounter scenarios where the same phenomenon (e.g., species occurrence, species abundance) is observed using two different types of samplers. For example, species data can be collected from scientific sampling with a completely random sample pattern, but also from opportunistic sampling (e.g., whale watching from commercial fishing vessels or bird watching from citizen science), where observers tend to look for particular species in areas where they expect to find them. Species Distribution Models (SDMs) are widely used tools for analysing this type of ecological data. In particular, two models are available for the aforementioned data: a geostatistical model (GM) for data collected where the sampling design is not directly related to the observations, and a preferential model (PM) for data obtained from opportunistic sampling. The integration of information from disparate sources can be addressed through the use of expert elicitation and integrated models. This paper focuses on a sequential Bayesian procedure for linking two models by updating prior distributions. The Bayesian paradigm is implemented together with the integrated nested Laplace approximation (INLA) methodology, which is an effective approach for making inference and predictions in spatial models with high performance and low computational cost. This sequential approach has been evaluated through the simulation of various scenarios and the subsequent comparison of the results from sharing information between models using a variety of criteria. The procedure has also been exemplified on a real dataset. The primary findings indicate that, in general, it is preferable to transfer information from the independent (with a completely random sampling) model to the preferential model rather than in the alternative direction. However, this depends on several factors, including the spatial range and the spatial arrangement of the sampling locations.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent16es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relation.ispartofseriesVol. 84es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjecthierarchical spatial modelses_ES
dc.subjectINLAes_ES
dc.subjectpreferential samplinges_ES
dc.subjectprior updatinges_ES
dc.subjectspecies distribution modelses_ES
dc.subject.otherCDU::5 - Ciencias puras y naturales::57 - Biología::574 - Ecología general y biodiversidades_ES
dc.subject.otherCDU::3 - Ciencias sociales::31 - Demografía. Sociología. Estadística::311 - Estadísticaes_ES
dc.titleBayesian feedback in the framework of ecological scienceses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1016/j.ecoinf.2024.102858es_ES
Appears in Collections:
Artículos - Estadística, Matemáticas e Informática


Thumbnail

View/Open:
 FigueiraBarberConesa - Bayesian feedback in the framework of ecological sciences.pdf

4,6 MB
Adobe PDF
Share:


Creative Commons ???jsp.display-item.text9???