Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/36841
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorAlfaro, Marcos-
dc.contributor.authorCabrera, Juan José-
dc.contributor.authorJiménez, Luis Miguel-
dc.contributor.authorReinoso, Óscar-
dc.contributor.authorPayá, Luis-
dc.contributor.otherDepartamentos de la UMH::Ingeniería de Sistemas y Automáticaes_ES
dc.date.accessioned2025-07-11T11:54:16Z-
dc.date.available2025-07-11T11:54:16Z-
dc.date.created2024-
dc.identifier.citation21st International Conference on Informatics in Control, Automation and Robotics (Porto, Portugal, 18-20 November, 2024) Volume 2, pp. 166-173es_ES
dc.identifier.isbn978-989-758-717-7-
dc.identifier.issn2184-2809-
dc.identifier.urihttps://hdl.handle.net/11000/36841-
dc.description.abstractTriplet networks are composed of three identical convolutional neural networks that function in parallel and share their weights. These architectures receive three inputs simultaneously and provide three different outputs, and have demonstrated to have a great potential to tackle visual localization. Therefore, this paper presents an exhaustive study of the main factors that influence the training of a triplet network, which are the choice of the triplet loss function, the selection of samples to include in the training triplets and the batch size. To do that, we have adapted and retrained a network with omnidirectional images, which have been captured in an indoor environment with a catadioptric camera and have been converted into a panoramic format. The experiments conducted demonstrate that triplet networks improve substantially the performance in the visual localization task. However, the right choice of the studied factors is of great importance to fully exploit the potential of such architectureses_ES
dc.formatapplication/pdfes_ES
dc.format.extent12es_ES
dc.language.isoenges_ES
dc.publisherSCITEPRESS – Science and Technology Publications, Lda.es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectRobot Localizationes_ES
dc.subjectPanoramic Imageses_ES
dc.subjectTriplet Losses_ES
dc.subject.otherCDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnologíaes_ES
dc.titleTriplet Neural Networks for the Visual Localization of Mobile Robotses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversion10.5220/0000193700003822es_ES
Aparece en las colecciones:
Congresos, ponencias y comunicaciones - Ingeniería de Sistemas y Automática


Vista previa

Ver/Abrir:
 2024-ICINCO-TripletNeuralNetworks.pdf

1,93 MB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.