Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/34876
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorVACA LAMATA, MARTA-
dc.contributor.authorPerez Martin, Agustin-
dc.contributor.authorPérez-Torregrosa, Agustín-
dc.contributor.otherDepartamentos de la UMH::Estudios Económicos y Financieroses_ES
dc.date.accessioned2025-01-18T08:26:09Z-
dc.date.available2025-01-18T08:26:09Z-
dc.date.created2018-
dc.identifier.citationJournal of Business Researches_ES
dc.identifier.issn1873-7978-
dc.identifier.urihttps://hdl.handle.net/11000/34876-
dc.description.abstractAbstract Nowadays, the volume of databases that financial companies manage is so great that it has become necessary to address this problem, and the solution to this can be found in Big Data techniques applied to massive financial datasets for segmenting risk groups. In this paper, the presence of large datasets is approached through the development of some Monte Carlo experiments using known techniques and algorithms. In addition, a linear mixed model (LMM) has been implemented as a new incremental contribution to calculate the credit risk of financial companies. These computational experiments are developed with several combinations of dataset sizes and forms to cover a wide variety of cases. Results reveal that large datasets need Big Data techniques and algorithms that yield faster and unbiased estimators. Big Data can help to extract the value of data and thus better decisions can be made without the runtime component. Through these techniques, there would be less risk for financial companies when predicting which clients will be successful in their payments. Consequently, more people could have access to credit loans.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent7es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relation.ispartofseries89es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectCredit scoringes_ES
dc.subjectBig Dataes_ES
dc.subjectMonte Carloes_ES
dc.subjectData mininges_ES
dc.subject.otherCDU::3 - Ciencias sociales::33 - Economíaes_ES
dc.titleBig Data techniques to measure credit banking risk in home equity loanses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1016/j.jbusres.2018.02.008 Get rights and contentes_ES
Aparece en las colecciones:
Artículos Estudios Económicos y Financieros


Vista previa

Ver/Abrir:
 articulo_publicadogika.pdf

613,88 kB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.