Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/34875

Feature Selection to Optimize Credit Banking Risk Evaluation Decisions for the Example of Home Equity Loans


Vista previa

Ver/Abrir:
 mathematics-08-01971 (3).pdf

460,34 kB
Adobe PDF
Compartir:
Título :
Feature Selection to Optimize Credit Banking Risk Evaluation Decisions for the Example of Home Equity Loans
Autor :
VACA LAMATA, MARTA  
Perez Martin, Agustin  
Pérez-Torregrosa, Agustín  
Rabasa, Alejandro  
Editor :
MDPI
Departamento:
Departamentos de la UMH::Estudios Económicos y Financieros
Fecha de publicación:
2020
URI :
https://hdl.handle.net/11000/34875
Resumen :
Abstract: Measuring credit risk is essential for financial institutions because there is a high risk level associated with incorrect credit decisions. The Basel II agreement recommended the use of advanced credit scoring methods in order to improve the efficiency of capital allocation. The latest Basel agreement (Basel III) states that the requirements for reserves based on risk have increased. Financial institutions currently have exhaustive datasets regarding their operations; this is a problem that can be addressed by applying a good feature selection method combined with big data techniques for data management. A comparative study of selection techniques is conducted in this work to find the selector that reduces the mean square error and requires the least execution time.
Palabras clave/Materias:
credit scoring
feature selection
big data
data mining
Área de conocimiento :
CDU: Ciencias sociales: Economía
Tipo de documento :
info:eu-repo/semantics/article
Derechos de acceso:
info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
https://doi.org/10.3390/math8111971
Aparece en las colecciones:
Artículos Estudios Económicos y Financieros



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.