Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/11000/34874
COMPUTATIONAL EXPERIMENT TO COMPARE TECHNIQUES IN LARGE DATASETS TO MEASURE CREDIT BANKING RISK IN HOME EQUITY LOANS
Título : COMPUTATIONAL EXPERIMENT TO COMPARE TECHNIQUES IN LARGE DATASETS TO MEASURE CREDIT BANKING RISK IN HOME EQUITY LOANS |
Autor : VACA LAMATA, MARTA Perez Martin, Agustin |
Editor : International Information and Engineering Technology Association |
Departamento: Departamentos de la UMH::Estudios Económicos y Financieros |
Fecha de publicación: 2017 |
URI : https://hdl.handle.net/11000/34874 |
Resumen :
In the 1960s, coinciding with the massive demand for credit cards, financial companies needed a
method to know their exposure to risk insolvency. It began applying credit-scoring techniques. In the
1980s credit-scoring techniques were extended to loans due to the increased demand for credit and
computational progress. In 2004, new recommendations of the Basel Committee (as called Basel II)
on banking supervision appeared. With the ensuing global financial crisis, a new document, Basel III,
appeared. It introduced more demanding changes on the control of borrowed capital.
Nowadays, one of the main problems not addressed is the presence of large datasets. This research is
focused on calculating probabilities of default in home equity loans, and measuring the computational
efficiency of some statistical and data mining methods. In order to do these, some Monte Carlo experiments with known techniques and algorithms have been developed.
These computational experiments reveal that large datasets need BigData techniques and algorithms
that yield faster and unbiased estimators.
|
Palabras clave/Materias: BigData Credit Scoring Monte Carlo Discriminant analysis Support Vector Machine |
Área de conocimiento : CDU: Ciencias sociales: Economía |
Tipo de documento : info:eu-repo/semantics/article |
Derechos de acceso: info:eu-repo/semantics/openAccess |
DOI : DOI: 10.2495/CMEM-V5-N5-771-779 |
Aparece en las colecciones: Artículos Estudios Económicos y Financieros
|
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.