Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/34811
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMolina, Desiré-
dc.contributor.authorsheibani, Esmaeil-
dc.contributor.authorYang, Bowen-
dc.contributor.authorMohammadi, Hajar-
dc.contributor.authorghiasabadi farahani, maryam-
dc.contributor.authorXu, Bo-
dc.contributor.authorSuo, Jiajia-
dc.contributor.authorCarlsen, Brian-
dc.contributor.authorVlachopoulos, Nick-
dc.contributor.authorZakeeruddin, Shaik Mohammed-
dc.contributor.authorGrätzel, Michael-
dc.contributor.authorHagfeldt, Anders-
dc.contributor.otherDepartamentos de la UMH::Farmacología, Pediatría y Química Orgánicaes_ES
dc.date.accessioned2025-01-17T09:17:30Z-
dc.date.available2025-01-17T09:17:30Z-
dc.date.created2022-02-
dc.identifier.citationACS Applied Energy Materials. 2022; 5(3), 3156-3165es_ES
dc.identifier.issn2574-0962-
dc.identifier.urihttps://hdl.handle.net/11000/34811-
dc.description.abstractIn this work, we describe a new class of non-fused 3D asymmetric compounds (named 1, 2, 3, and 4) as low-cost organic hole-transporting materials (HTMs) for perovskite solar cells (PSCs). The fundamental understanding of the influence of the methylthio and methoxy group substitutions on the fluorene moiety has been analyzed, as well as the position of methoxy groups in the aromatic rings of triphenylamine pending groups (para or meta). Experimental results demonstrate that the position of the methoxy group in the triphenylamine pending group influences decisively the thermal properties and the amplitude of the electronic bandgap, hydrophobicity, film formation, and thermal stress stability. The presence of methylthio or methoxyl substituents in the 2,7-positions of the fluorene moiety mainly affects the electrochemical properties, hole mobility, and morphology of the hole-transporting layer (HTL). Thus, maxima sunlight-to-electricity power conversion efficiencies (PCEs) of 17.7 and 17.8% have been obtained in PSCs with methoxy groups in the fluorene moieties (1 and 3), respectively. Consequently, compound 1-based PSCs exhibit a better stability than the other three materials and the standard HTM-spiro-OMeTAD-based devices.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent10es_ES
dc.language.isoenges_ES
dc.publisherAmerican Chemical Societyes_ES
dc.rightsinfo:eu-repo/semantics/closedAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjecthole-transporting materialses_ES
dc.subjectperovskite solar cellses_ES
dc.subject3D non-fused fluorene structurees_ES
dc.subjectlow-costes_ES
dc.subjectstabilityes_ES
dc.titleMolecularly Engineered Low-Cost Organic Hole-Transporting Materials for Perovskite Solar Cells: The Substituent Effect on Non-fused Three-Dimensional Systemses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.contributor.instituteInstitutos de la UMH::Instituto de Bioingenieríaes_ES
dc.relation.publisherversion10.1021/acsaem.1c03775es_ES
Appears in Collections:
Artículos Farmacología, Pediatría y Química Orgánica


no-thumbnailView/Open:

 Molecularly Engineered Low-Cost Organic Hole-Transporting Materials for Perovskite Solar Cells. The Substituent Effect on Non-fused Three-Dimensional Systems.pdf



3,52 MB
Adobe PDF
Share:


Creative Commons ???jsp.display-item.text9???