Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/11000/34691
Environmental factors influencing DDT–DDE spatial
distribution in an agricultural drainage system determined
by using machine learning techniques
Ver/Abrir: s10653-023-01486-y (1).pdf
1,6 MB
Adobe PDF
Compartir:
Este recurso está restringido
Título : Environmental factors influencing DDT–DDE spatial
distribution in an agricultural drainage system determined
by using machine learning techniques |
Autor : Melendez-Pastor, Ignacio Lopez‑Granado, Otoniel M. Navarro-Pedreño, Jose Hernández, Encarni I. Jordán-Vidal, Manuel Miguel Gómez Lucas, Ignacio |
Editor : Saltador |
Departamento: Departamentos de la UMH::Agroquímica y Medio Ambiente |
Fecha de publicación: 2023-02 |
URI : https://hdl.handle.net/11000/34691 |
Resumen :
The presence and persistence of pesticides
in the environment are environmental problems
of great concern due to the health implications for
humans and wildlife. The persistence of DDT–DDE
in a Mediterranean coastal plain where pesticides
were widely used and were banned decades ago is
the aim of this study. Different sources of analytical
information from water and soil analysis and topography
and geographical variables were combined with
the purpose of analyzing which environmental factors
are more likely to condition the spatial distribution of
DDT–DDE in the drainage watercourses of the area.
An approach combining machine learning techniques,
such as Random Forest and Mutual Information
(MI), for classifying DDT–DDE concentration levels
based on other environmental predictive variables
was applied. In addition, classification procedure was
iteratively performed with different training/validation
partitions in order to extract the most informative
parameters denoted by the highest MI scores and
larger accuracy assessment metrics. Distance to drain
canals, soil electrical conductivity, and soil sand texture
fraction were the most informative environmental
variables for predicting DDT–DDE water concentration
clusters.
|
Palabras clave/Materias: DDT DDE Spatial distribution Soil texture Hydrology Random forest Mutual information |
Área de conocimiento : CDU: Ciencias aplicadas: Ingeniería. Tecnología |
Tipo de documento : info:eu-repo/semantics/article |
Derechos de acceso: info:eu-repo/semantics/closedAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
DOI : https://doi.org/10.1007/s10653-023-01486-y |
Aparece en las colecciones: Artículos Agroquímica y Medio Ambiente
|
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.