Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/11000/34530
Automatic Selection of Temperature Variables for Short-Term Load Forecasting
Título : Automatic Selection of Temperature Variables for Short-Term Load Forecasting |
Autor : López García, Miguel Candela Esclapez, Alfredo Senabre, Carolina VALERO, SERGIO |
Editor : MDPI |
Departamento: Departamentos de la UMH::Ingeniería Mecánica y Energía |
Fecha de publicación: 2022 |
URI : https://hdl.handle.net/11000/34530 |
Resumen :
Due to the infeasibility of large-scale electrical energy storage, electricity is generated and
consumed simultaneously. Therefore, electricity entities need consumption forecasting systems to
plan operations and manage supplies. In addition, accurate predictions allow renewable energies on
electrical grids to be managed, thereby reducing greenhouse gas emissions. Temperature affects electricity
consumption through air conditioning and heating equipment, although it is the consumer’s
behavior that determines specifically to what extent. This work proposes an automatic method of
processing and selecting variables, with a two-fold objective: improving both the accuracy and the
interpretability of the overall forecasting system. The procedure has been tested by the predictive system
of the Spanish electricity operator (Red Eléctrica de España) with regard to peninsular demand.
During the test period, the forecasting error was consistently reduced for the forecasting horizon,
with an improvement of 0.16% in MAPE and 59.71 MWh in RMSE. The new way of working with
temperatures is interpretable, since they separate the effect of temperature according to location and
time. It has been observed that heat has a greater influence than the cold. In addition, on hot days,
the temperature of the second previous day has a greater influence than the previous one, while the
opposite occurs on cold days.
|
Palabras clave/Materias: accuracy interpretability short-term load forecasting temperature analysis temperature processing |
Área de conocimiento : CDU: Ciencias aplicadas: Ingeniería. Tecnología: Ingeniería mecánica en general. Tecnología nuclear. Electrotecnia. Maquinaria |
Tipo de documento : info:eu-repo/semantics/article |
Derechos de acceso: info:eu-repo/semantics/openAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
DOI : https://doi.org/10.3390/su142013339 |
Aparece en las colecciones: Artículos Ingeniería Mecánica y Energía
|
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.