Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/11000/34524
Automatic classification of special days for short-term load forecasting
Título : Automatic classification of special days for short-term load forecasting |
Autor : López García, Miguel VALERO, SERGIO Sans, Carlos |
Editor : Elsevier |
Departamento: Departamentos de la UMH::Ingeniería Mecánica y Energía |
Fecha de publicación: 2022 |
URI : https://hdl.handle.net/11000/34524 |
Resumen :
Electricity demand presents a repetitive pattern following daily, weekly and seasonal patterns. However, factors
like temperature or social events tend to disrupt these patterns introducing outlying data that is difficult to
forecast. This paper introduces a new methodology to classify special days without any prior knowledge of the
database. Simple classification of special days into two or three categories is insufficient as the consumers’
behavior has many shades on these days. However, classifying special days in a wide range of categories required
a deep understanding of the consumers’ behavior on different days and periods of the year. The methodology
proposed describes an algorithm to automate this classification starting from a simple day-of-the-week classification
and branching into as many categories as needed to fit a real database. Categories with similar profiles are
merged to avoid overfitting and actual outliers are detected to ensure that no false categories are created. The
methodology is developed using data from 2010 to 2017 and tested in three different systems. The benchmark
used is the classification used by the Transmission System Operator in Spain and the test show that the proposed
methodology provides more accurate results without the need of an expert to develop the classification.
|
Palabras clave/Materias: Load forecasting Power demand Holidays |
Área de conocimiento : CDU: Ciencias aplicadas: Ingeniería. Tecnología: Ingeniería mecánica en general. Tecnología nuclear. Electrotecnia. Maquinaria |
Tipo de documento : info:eu-repo/semantics/article |
Derechos de acceso: info:eu-repo/semantics/openAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
DOI : https://doi.org/10.1016/j.epsr.2021.107533 |
Aparece en las colecciones: Artículos Ingeniería Mecánica y Energía
|
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.