Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/11000/34512
Benchmarking Analysis of the Accuracy of Classification
Methods Related to Entropy
Título : Benchmarking Analysis of the Accuracy of Classification
Methods Related to Entropy |
Autor : Orenes, Yolanda Rabasa, Alejandro Rodriguez-Sala, Jesus Javier Sanchez-Soriano, Joaquin |
Editor : MDPI |
Departamento: Departamentos de la UMH::Estadística, Matemáticas e Informática |
Fecha de publicación: 2021-07 |
URI : https://hdl.handle.net/11000/34512 |
Resumen :
In the machine learning literature we can find numerous methods to solve classification
problems. We propose two new performance measures to analyze such methods. These measures are
defined by using the concept of proportional reduction of classification error with respect to three
benchmark classifiers, the random and two intuitive classifiers which are based on how a non-expert
person could realize classification simply by applying a frequentist approach. We show that these
three simple methods are closely related to different aspects of the entropy of the dataset. Therefore,
these measures account somewhat for entropy in the dataset when evaluating the performance of
classifiers. This allows us to measure the improvement in the classification results compared to
simple methods, and at the same time how entropy affects classification capacity. To illustrate how
these new performance measures can be used to analyze classifiers taking into account the entropy
of the dataset, we carry out an intensive experiment in which we use the well-known J48 algorithm,
and a UCI repository dataset on which we have previously selected a subset of the most relevant
attributes. Then we carry out an extensive experiment in which we consider four heuristic classifiers,
and 11 datasets.
|
Palabras clave/Materias: entropy classification methods intuitive classification method performance measures benchmarking |
Área de conocimiento : CDU: Ciencias puras y naturales: Generalidades sobre las ciencias puras |
Tipo de documento : info:eu-repo/semantics/article |
Derechos de acceso: info:eu-repo/semantics/openAccess Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
DOI : https://doi.org/10.3390/e23070850 |
Aparece en las colecciones: Artículos Estadística, Matemáticas e Informática
|
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.