Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/34510

Incremental Decision Rules Algorithm: A Probabilistic and Dynamic Approach to Decisional Data Stream Problems


Vista previa

Ver/Abrir:
 _5 IncremDecisRules.pdf

913,57 kB
Adobe PDF
Compartir:
Título :
Incremental Decision Rules Algorithm: A Probabilistic and Dynamic Approach to Decisional Data Stream Problems
Autor :
Mollá, Nuria  
Rabasa, Alejandro  
Rodriguez-Sala, Jesus Javier  
Sánchez Soriano, Joaquín
Ferrándiz, Antonio
Editor :
MDPI
Departamento:
Departamentos de la UMH::Estadística, Matemáticas e Informática
Fecha de publicación:
2021-12
URI :
https://hdl.handle.net/11000/34510
Resumen :
Data science is currently one of the most promising fields used to support the decisionmaking process. Particularly, data streams can give these supportive systems an updated base of knowledge that allows experts to make decisions with updated models. Incremental Decision Rules Algorithm (IDRA) proposes a new incremental decision-rule method based on the classical ID3 approach to generating and updating a rule set. This algorithm is a novel approach designed to fit a Decision Support System (DSS) whose motivation is to give accurate responses in an affordable time for a decision situation. This work includes several experiments that compare IDRA with the classical static but optimized ID3 (CREA) and the adaptive method VFDR. A battery of scenarios with different error types and rates are proposed to compare these three algorithms. IDRA improves the accuracies of VFDR and CREA in most common cases for the simulated data streams used in this work. In particular, the proposed technique has proven to perform better in those scenarios with no error, low noise, or high-impact concept drifts
Palabras clave/Materias:
data mining methods for data streams
explainable temporal data analysis
classification methods
Área de conocimiento :
CDU: Ciencias puras y naturales: Generalidades sobre las ciencias puras
Tipo de documento :
info:eu-repo/semantics/article
Derechos de acceso:
info:eu-repo/semantics/openAccess
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
DOI :
https://doi.org/10.3390/math10010016
Aparece en las colecciones:
Artículos Estadística, Matemáticas e Informática



Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.