Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/11000/34295
Application of SOM neural networks to short-term load forecasting: The Spanish electricity market case study
Ver/Abrir: 1-s2.0-S0378779612001095-main.pdf
1,6 MB
Adobe PDF
Compartir:
Este recurso está restringido
Título : Application of SOM neural networks to short-term load forecasting: The Spanish electricity market case study |
Autor : López García, Miguel VALERO, SERGIO Senabre, Carolina Aparicio, Juan Gabaldon, Antonio |
Editor : Elsevier |
Departamento: Departamentos de la UMH::Ingeniería Mecánica y Energía |
Fecha de publicación: 2012 |
URI : https://hdl.handle.net/11000/34295 |
Resumen :
The use of neural networks in load forecasting has been a popular research topic over the last decade.
However, the use of Kohonen’s self-organizing maps (SOM) for this purpose remains yet mostly unexplored.
This paper presents a forecasting model based on this particular type of neural network. The scope
of this study is not only to prove that SOM neural networks can be effectively used in load forecasting
but to provide a deep and thorough analysis of the prediction and a real-world application. The data used
to assess the validity of the model corresponds to Spain energy consumption from 2001 to 2010. Also
meteorological data from this period has been used. The analysis comprises the study of the significance
of different meteorological variables, the relevance of these meteorological data when recent load values
are used as input and the effect of using different patterns to select the days to train the map. In addition,
the evaluation of the frequency components of the data has provided an explanation to why apparently
similar data sets allow different forecasting performances of the model. In order to build an application to
the Spanish electricity market, the model was adjusted to timely forecast a load profile for each session of
the daily and intra-daily markets. These forecasts are intended as an input to a decision support system
for any commercializing company bidding on the market.
|
Palabras clave/Materias: Short-term load forecasting Self-organizing maps Neural network Electrical market |
Área de conocimiento : CDU: Ciencias aplicadas: Ingeniería. Tecnología: Ingeniería mecánica en general. Tecnología nuclear. Electrotecnia. Maquinaria |
Tipo de documento : info:eu-repo/semantics/article |
Derechos de acceso: info:eu-repo/semantics/closedAccess |
DOI : https://doi.org/10.1016/j.epsr.2012.04.009 |
Aparece en las colecciones: Artículos Ingeniería Mecánica y Energía
|
La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.