Please use this identifier to cite or link to this item: https://hdl.handle.net/11000/34294
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLópez García, Miguel-
dc.contributor.authorVALERO, SERGIO-
dc.contributor.authorSenabre, Carolina-
dc.contributor.authorGabaldón Marín, Antonio-
dc.contributor.otherDepartamentos de la UMH::Ingeniería Mecánica y Energíaes_ES
dc.date.accessioned2025-01-10T19:01:53Z-
dc.date.available2025-01-10T19:01:53Z-
dc.date.created2013-
dc.identifier.citationIEEE Transactions on Power Systemses_ES
dc.identifier.issn1558-0679-
dc.identifier.issn0885-8950-
dc.identifier.urihttps://hdl.handle.net/11000/34294-
dc.description.abstractThis paper proposes the use of two indicators of the predictability of the load series along with an accuracy value such as mean average percentage error as standard measures of load forecasting performance. Over the last 10 years, there has been a significant increase in load forecasting models proposed in engineering journals.Most of these models provide a description of the inner design of the model, the results from applying this model to a specific data base and the conclusions drawn fromthis application. However, a single accuracy value may not be sufficient to describe the performance of the model when applied to other data bases. The aim of this paper is to provide researchers with a tool that is able to assess the predictability of a load series and, therefore, contextualize the forecasting accuracy reported. Nine different data bases fromthe U.S. have been used; all of them include hourly load and temperature data.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent9es_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.relation.ispartofseries28es_ES
dc.relation.ispartofseries3es_ES
dc.rightsinfo:eu-repo/semantics/closedAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectForecastinges_ES
dc.subjectFrequency domain analysises_ES
dc.subjectPerformance evaluationes_ES
dc.subjectPower demandes_ES
dc.subject.otherCDU::6 - Ciencias aplicadas::62 - Ingeniería. Tecnología::621 - Ingeniería mecánica en general. Tecnología nuclear. Electrotecnia. Maquinariaes_ES
dc.titleShort-Term Predictability of Load Series: Characterization of Load Data Baseses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1109/TPWRS.2013.2250317es_ES
Appears in Collections:
Artículos Ingeniería Mecánica y Energía


no-thumbnailView/Open:

 Short-Term_Predictability_of_Load_Series_Characterization_of_Load_Data_Bases.pdf



1,55 MB
Adobe PDF
Share:


Creative Commons ???jsp.display-item.text9???