Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/11000/34258
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorAnton-Sanchez, Laura-
dc.contributor.authorALCARAZ, JAVIER-
dc.contributor.authorMonge, Juan Francisco-
dc.contributor.authorAparicio, Juan-
dc.contributor.authorRamón, Nuria-
dc.contributor.otherDepartamentos de la UMH::Estadística, Matemáticas e Informáticaes_ES
dc.date.accessioned2025-01-10T08:58:59Z-
dc.date.available2025-01-10T08:58:59Z-
dc.date.created2020-
dc.identifier.citationEuropean Journal of Operational Researches_ES
dc.identifier.issn1872-6860-
dc.identifier.issn0377-2217-
dc.identifier.urihttps://hdl.handle.net/11000/34258-
dc.description.abstractThe measurement of technical efficiency is a topic of great interest. Since the beginning, many researchers have developed new approaches to gauge technical efficiency, mainly in the non-parametric area of Data Envelopment Analysis (DEA). However, the first measures in DEA, the well-known radial models, only ac- counted for radial inefficiency, which motivated the introduction in the literature of the so-called Global Efficiency Measures (GEMs); non-oriented and non-radial in nature. Two famous GEMs are the Russell Graph Measure and the Enhanced Russell Graph Measure, also known as the Slacks-Based Measure. These approaches aggregate input and output specific efficiencies through the arithmetic mean, which may not be the most appropriate aggregator function when input and output efficiency ratios are considered, as will be shown. In this paper, in contrast, we propose aggregating input and output specific inefficiencies by applying the geometric average, which will allow us to define new multiplicative versions of the Rus- sell Graph Measures. We also prove some theoretical results and introduce an iterative algorithm, based upon Second Order Cone Programming, to solve the new models. Finally, the implementation of the in- troduced approaches is empirically illustrated through a data set taken from the literature.es_ES
dc.formatapplication/pdfes_ES
dc.format.extent12es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relation.ispartofseries292es_ES
dc.relation.ispartofseries2es_ES
dc.rightsinfo:eu-repo/semantics/closedAccesses_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectData envelopment analysises_ES
dc.subjectRussell Graph Measureses_ES
dc.subjectPropertieses_ES
dc.subjectSecond order cone programminges_ES
dc.subject.otherCDU::5 - Ciencias puras y naturales::51 - Matemáticases_ES
dc.titleRussell Graph efficiency measures in Data Envelopment Analysis: The multiplicative approaches_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://doi.org/10.1016/j.ejor.2020.11.001es_ES
Aparece en las colecciones:
Artículos Estadística, Matemáticas e Informática


no-thumbnailVer/Abrir:

 2021 Alcaraz-et-al-EJOR.pdf



740,77 kB
Adobe PDF
Compartir:


Creative Commons La licencia se describe como: Atribución-NonComercial-NoDerivada 4.0 Internacional.